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Nur wenn man nicht auf den Nutzen nach außen sieht, sondern in der Ma-
thematik selbst auf das Verhältnis der unbenutzten Teile, bemerkt man das
andere und eigentliche Gesicht dieser Wissenschaft. Es ist nicht zweckbedacht,
sondern unökonomisch und leidenschaftlich. – Der gewöhnliche Mensch braucht
von ihr nicht viel mehr als er in der Elementarschule lernt; der Ingenieur nur
so viel, daß er sich in den Formelsammlungen eines technischen Taschenbuches
zurechtfindet, was nicht viel ist; selbst der Physiker arbeitet gewöhnlich mit
wenig differenzierten mathematischen Mitteln. Brauchen sie es einmal anders, so
sind sie zumeist auf sich selbst angewiesen, weil den Mathematiker solche Adap-
tierungsarbeiten wenig interessieren. So kommt es, daß Spezialisten für manche
praktisch wichtigen Teile der Mathematik Nichtmathematiker sind. Daneben
aber liegen unermeßliche Gebiete, die nur für den Mathematiker da sind: ein
ungeheures Nervengeflecht hat sich um die Ausgangspunkte einiger weniger
Muskeln angesammelt. Irgendwo innen arbeitet der einzelne Mathematiker und
seine Fenster gehen nicht nach außen, sondern auf die Nachbarräume.

— Robert Musil, Der mathematische Mensch (1913)
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Introduction

The following text is a detailed account of the fundamental concepts and basic results in the
theory of simplicial and cyclic spaces. Much of the literature concerns itself mainly with simplicial
and cyclic sets; in this text, particular care has been taken to make statements about simplicial
and cyclic spaces, which offer a somewhat richer structure.

Section 1 defines the simplicial and cyclic categories, which serve to impose a certain structure
on the collection of spaces we study. Sections 2–4 define and study the realization functor, which
uses the simplicial structure information to glue together the simplices of simplicial spaces to
obtain a single topological space. Section 5 covers the most important aspect of cyclic spaces,
namely that their realization admits a canonical circle action. A natural question to ask is how
one can compute fixed points under this circle action (and subgroups thereof); answering this
calls for an elaborate subdivision procedure, which is described in section 6. Finally the results
of the preceding sections are used in section 7 to study the free loop space of the classifying space
of a (topological) group.

The account given here thematically follows the first and second section of [BHM93], proving
in detail many assertions made there; especially in the first sections, the quite modern and
elementary treatment [Lod98] is also used.

1 The Simplicial and Cyclic Category

We introduce the simplicial category ∆, extend it to obtain Connes’s cyclic category Λ and
provide insightful examples.

Definition 1.1. The n-dimensional standard simplex |∆n| is defined as the subspace

|∆n| :=

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣xi ≥ 0,
∑
i

xi = 1

}
⊂ Rn+1.

Setting any xi = 0 yields obvious inclusions Di : |∆n−1| ↪→ |∆n| of the i-th face, i. e. the
face opposite of the vertex vi = (0, . . . , 0, 1, 0, . . . , 0), which has as only nonzero entry the i-th
coordinate. The maps Di, i = 0, . . . , n, are called coface maps.

The codegeneracy maps Si : |∆n+1| � |∆n|, i = 0, . . . , n, are the linear projections such that
Si(vi+1) = vi. y

Remark 1.2. It is clear that the behaviour of the coface and codegeneracy maps can be captured
by observing what they do on the spanning vertices vi of the simplex. We have obvious identities
DjDi = DiDj−1 if i < j and SjSi = SiSj+1 if i ≤ j. When i = j or i = j + 1, we also have
SjDi = id. If i 6= j, we have SjDi = DiSj−1 if i < j, and SjDi = Di−1Sj if i > j + 1. y

This behaviour can be captured abstractly in the following definition (cf. [Lod98, 6.1.1]):

Definition 1.3. The simplicial category ∆ has as objects the finite ordered sets [n] := {0, 1, . . . , n},
n ∈ N. The morphisms are generated by the coface maps δi : [n− 1]→ [n], i = 0, . . . , n and the
codegeneracy maps σi : [n+ 1]→ [n], i = 0, . . . , n, subject to the following cosimplicial relations:

δjδi = δiδj−1 for i < j

σjσi = σiσj+1 for i ≤ j

σjδi =


δiσj−1 for i < j

id for i = j, j + 1

δi−1σj for i > j + 1

(1)

4



In the opposite category ∆op we write di = δop
i : [n] → [n − 1] for the face maps and si =

σop
i : [n] → [n + 1] for the degeneracy maps. The relations (1) translate in ∆op to the following

simplicial relations:

didj = dj−1di for i < j

sisj = sj+1si for i ≤ j

disj =


sj−1di for i < j

id for i = j, j + 1

sjdi−1 for i > j + 1

(1op)

A simplicial set X• is a functor X• : ∆op → Set. For brevity, we write Xn := X([n]) and denote
by di and si the images of the respective maps under X. The elements of Xn are sometimes
called n-cells of X• (in particular, 0-cells are called vertices). An n-cell x is called degenerate if
it can be obtained from an (n− 1)-cell y as x = siy for some i; else it is called nondegenerate.

The category of simplicial sets is the functor category Func(∆op, Set) and will be denoted by
S. It has as objects simplicial sets, i. e. functors X•, Y• : ∆op → Set, and as morphisms natural
transformations f• : X• → Y• between these functors. y

Example 1.4. In particular, Hom-sets are sets. We have a rather important example, the stan-
dard n-dimensional simplicial set ∆n with ∆n(−) = Hom∆(−, [n]) = Hom∆op([n],−). For a
simplicial set X•, by the Yoneda lemma (cf. [Awo10, Lemma 8.2]) we have an isomorphism

HomS(∆n, X•) = Nat(∆n, X•) ∼= Xn

that is natural in both n and X•. Hence simplicial maps out of ∆n are uniquely determined by
Xn. y

Example 1.5. We have already seen an example of a cosimplicial space in definition 1.1: It is a
functor |∆•| : ∆→ Top that assigns |∆[n]| = |∆n|, and sends |∆δi | = Di, |∆σi | = Si.

We define the functor Sing(−) : Top → S as follows: For every topological space Y , we set
Sing(Y )(−) = HomTop(|∆•|, Y ); continuous maps g : Y → Z become postcomposition with g.
Given f ∈ Xn = HomTop(|∆n|, Y ), we have

di(f) = |∆n−1| Di
↪→ |∆n| f→ Y ∈ HomTop(|∆n−1|, Y ) and

si(f) = |∆n+1|
Si

� |∆n| f→ Y. ∈ HomTop(|∆n+1|, Y ).

Thus we see that Sing(−) is a functor that yields a simplicial set of the possible mappings of the
standard simplex into an arbitrary topological space. The abstract idea of the face decomposition
– “leaving out a vertex” – and the degeneracies – “collapsing two vertices” – becomes explicit here
by precomposing with topological maps that actually do this. y

Example 1.6. More generally, one can also define simplicial objects in an arbitrary category
C: They are functors X•, Y• : ∆op → C with natural transformations as (simplicial) morphisms.
For example, a simplicial group G• is a family of groups (Gi)i∈N with group homomorphisms
di : Gn → Gn−1 and si : Gn → Gn+1 for all n ∈ N, i = 0, . . . , n, such that the relations (1op)
hold. Often one does not explicitly specify the functor G•, but rather describes how the family
of groups admits the structure carried over from ∆op.

Given a simplicial set X•, we can construct a simplicial group C∗(X•) that has Cn(X•) = Z[Xn],
the free abelian group on the generators Xn; the maps di and si are the obvious ones on the
generators Xn and extend linearly. In classical algebraic topology, the chain complexes arising
in singular homology are examples of simplicial abelian groups: For a topological space Y , using
X• = Sing(Y ) from the previous example yields Cn(X•) = Z[{σ : |∆n| → Y }], the singular chain
complex. The “total boundary” used in homology is then just the alternating sum of the face
maps: ∂ =

∑n
i=0(−1)idi : Cn(X•) → Cn−1(X•). (Cf. [Fri08, Ex. 6.3]; also see [Hat02, Ch. 2] for

an elementary treatment.) y
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Definition 1.7. The cyclic category Λ is obtained from ∆ by adding a generating arrow τn : [n]→
[n], n ∈ N, modulo the following cocyclic relations1:

τnδi = δi−1τn−1 for 1 ≤ i ≤ n; τnδ0 = δn
τnσi = σi−1τn+1 for 1 ≤ i ≤ n; τnσ0 = σnτ

2
n+1

τn+1
n = id

(2)

Again, we denote with Λop the opposite category; the generating arrows are denoted by di, si
and tn with the relations (1op) and (2op) as follows:

ditn = tn−1di−1 for 1 ≤ i ≤ n; d0tn = dn
sitn = tn+1si−1 for 1 ≤ i ≤ n; s0tn = t2n+1sn
tn+1
n = id

(2op)

A cyclic set X• is a functor X• : Λop → Set. The category of cyclic sets is the functor category
Func(Λop, Set) and is denoted by CycSet. y

Remark 1.8. The cyclic category was introduced by Alain Connes in his 1983 paper Coho-
mologie Cyclique et Foncteurs Extn [Con83, Sect. 2]. There, the category’s set of morphisms
HomΛ([m], [n]) is defined as the homotopy classes of monotone degree-1-maps ϕ : S1 → S1 such
that ϕ(Z/(m+ 1)Z) ⊆ ϕ(Z/(n+ 1)Z).

One can construct ∆ and Λ more “explicitly” as subcategories of the category FinSet of finite sets
and set-maps. Let δi : [n − 1] → [n] to be the unique, order-preserving, injective set-map that
does not contain i in its image; σi : [n + 1] → [n] to be the unique, order-preserving, surjective
set-map for which the preimage σ−1

i (i) has two elements; and τn : [n] → [n] via i 7→ i − 1
mod n+ 1.

In the opposite categories these set-maps cannot be set-maps; hence the intuition behind di is
“leave out i”, and si means “let i occur in two successive places”; tn is an actual set-map i 7→ i+1
mod n+ 1, the “rotation of corners”. y

Example 1.9. Analogously to example 1.4, we have the standard n-dimensional cyclic set
Λn(−) = HomΛ(−, [n]) = HomΛop([n],−). Again we have HomCycSet(Λ

n, X•) ∼= Xn naturally.

We can endow the cosimplicial space |∆•| with extra maps Tn : |∆n| → |∆n| that send the
simplex corners vi to vi−1, 1 ≤ i ≤ n, Tn(v0) = vn, and extend linearly on the faces. This turns
|∆•| into a cocyclic space (cf. [Lod98, 7.1.3]). y

It appears like cyclic objects2 are just simplicial objects with some extra structure. We formalize
this aspect in the following

Proposition 1.10. The following properties establish how Λ relates to ∆.

(i) Every f ∈ HomΛ([m], [n]) has a unique decomposition f = gr, g ∈ Hom∆([m], [n]), r ∈
AutΛ([m]), and we have HomΛ([m], [n]) ∼= Hom∆([m], [n])× Cop

m+1.

(ii) This isomorphism allows an obvious inclusion functor j : ∆ → Λ that induces a forgetful
functor j∗ : Func(Λop,C)→ Func(∆op,C) that forgets the extra maps tn.

1 Note that the relation τnδ0 = δn need not be expcicitly specified: It follows from the other relation via δn =
τn+1
n δn = τnn δn−1τn−1 = . . . = τnδn−nτnn−1 = τnδ0. Similarly, σnτ2n+1 = τn+1

n σnτ2n+1 = τnnσn−1τ3n+1 =

. . . = τnσn−nτ
2+n
n+1 = τnσ0.

2Warning: Analogously to a “simplicial group” one could talk about “cyclic groups” in this context. However, the
term is already in use, so “cyclic group” will always mean a group G = 〈g〉.
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Proof. The unique decomposition in (i) follows from rules (1) and (2): Given a representation
f = fkfk−1 · · · f1 ∈ HomΛ([m], [n]), fi ∈ {δi, σi, τ j}, we can w. l. o. g. assume f2 6= τ , f1 = τ j for
some j ∈ [m]. Let k̄ = max{i | 1 ≤ i ≤ k, fi = τ}. If k̄ > 1, then one can exchange fk̄ with fk̄−1

using (2), and by induction this yields the desired decomposition f = gr. It is unique: Assume
f = gr = g′r′, then if r = r′ we have g = g′ and are done; otherwise we have g = g′r′r−1 = g′τ j

for some j ∈ {1, . . . ,m}. For this equality to hold there must exist a relation among generators
satisfying hτ = h′ for some h, h′ ∈ {δi, σi}, a contradiction.

The preceding argument shows that for every choice of f ∈ Hom∆([m], [n]) and j ∈ [m], we
obtain a different arrow in Λ. The set AutΛ([n]) contains exactly all τ jn, j = 0, . . . , n, and none
of the other endomorphisms (remark 1.8 is helpful to see this). We identify

AutΛ([m]) = {τ im | i = 0, . . . ,m} ←→ (Z/(m+ 1)Z)op ∼= Cop
m+1

in accordance with remark 1.8, by letting τm be the multiplication on the right by the inverse of
the generator of Cm+1, the cyclic group of orderm+1. (While from an algebraic point of view the
distinction between Cop

m+1 and Cm+1 is unnecessary, the notation is meant to suggest that Cm+1

is generated by tm, and the opposite group is generated by τm.) This yields the isomorphism of
(i) and the dual version reads HomΛop ∼= Hom∆op ×Cm+1.

The inclusion functor j : ∆→ Λ in (ii) is the identity and hence injective on the set of objects;
it maps f 7→ f × id[m] ∈ HomΛ([m], [n]) faithfully, so ∆ is a subcategory of Λ.

Proposition 1.11. The category Λ is self-dual, i. e. Λ ∼= Λop.

Note. This is not true in ∆: Already in the lowest possible dimension, the Hom-sets do not
have the same cardinality, i. e. Hom∆([0], [1]) = {δ0, δ1}, but Hom∆op([0], [1]) = {s0}. In Λ this
is repaired by the fact that HomΛop([0], [1]) = {s0, s0t

−1
1 }.

Proof of Proposition 1.11. We give an explicit equivalence of the categories: It is the identity on
objects, and the morphisms are mapped via −∗ : Λ→ Λop for every n ∈ N as follows:

δ∗i = si i = 0, . . . , n− 1 δi : [n− 1]→ [n]

δ∗n = s0t
−1
n δn : [n− 1]→ [n]

σ∗i = di+1 i = 0, . . . , n− 1 σi : [n]→ [n− 1]

τ∗n = t−1
n τn : [n]→ [n]

(3)

The mapping is functorial as can be verified by checking that it is compatible with the relations
(1) and (2). Exemplarily, we have

sjsi = δ∗j δ
∗
i = (δjδi)

∗ = (δiδj−1)∗ = δ∗i δ
∗
j−1 = sisj−1 for i < j,

t−1
n = d1s0t

−1
n = (σ0δn)∗ = (δn−1σ0)∗ = s0t

−1
n−1d1 = s0t

−1
n−1tn−1d0t

−1
n = t−1

n , and

si−1t
−1
n−1 = t−1

n si = (τnδi)
∗ = (δi−1τn−1)∗ = si−1t

−1
n−1.

We have the following identities, using (2):

δ∗∗i = s∗i = δi+1 = τ−1
n τnδi+1 = τ−1

n δiτn−1

σ∗∗i = d∗i+1 = σi+1 = τ−1
n−1τn−1σi+1 = τ−1

n−1σiτn

τ∗∗n = t∗−1
n = τn

Hence for any f ∈ HomΛ([m], [n]), one has f∗∗ = τ−1
n fτm. So f and f∗∗ agree up to unique

isomorphism, and this implies ([Awo10, 7.25]) that Λ and Λop are equivalent categories.

Remark 1.12. The self-duality leads to an equivalent construction of Λ via an extra degeneracy
σn+1 := σ0τ

−1
n as used in [DHK85, p. 282]; see [Lod98, 6.1.11]. y
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2 Realization of Simplicial Spaces

We introduce the realization functor, which will be studied carefully in the following sections.
While the prototypical standard simplicial and cyclic sets are finite in every dimension, it will later
be interesting to see what happens in the case of simplicial (or cyclic) spaces. We will generally
pick as our “category of reasonably well-behaved spaces” the compactly generated weak Hausdorff
spaces which form a category CGWH. (A helpful and concise list of properties can be found in
[Str09].)

Definition 2.1. The category of simplicial spaces is the functor category Func(∆op,CGWH)
and denoted by SimpSpace. The category of cyclic spaces, CycSpace, is defined analogously as
Func(Λop,CGWH). y

Remark 2.2. The standard simplicial and cyclic sets regarded as simplicial and cyclic spaces
are assumed to carry the discrete topology. This way, any simplicial (resp. cyclic) set can be
regarded as a discrete simplicial (resp. cyclic) space. y

The following definition will be central to defining the realization functor. It uses the general
notion of the coend of a dinatural transformation developed in [ML98, IX.4–5].

Definition 2.3. Let S : Cop×C→ D be a functor. The coend of S, written
∫ c:C

S(c, c), is defined
to be the universal dinatural transformation ω : S

..→ z, z ∈ Ob(D), such that for any dinatural
ω′ : S

..→ z′, there is a unique arrow completing, for all f ∈ HomCop(x, y), the following diagram:

S(x, x)

S(x, y) z z′

S(y, y)

ωx

ω′x

S(id,f)

S(f,id)

∃!
ωy

ω′y

Given functors F : Cop → D and G : C → D and if D has products, one also writes F ×C G for∫ c:C
(F ×G)(c, c). The definition of an end is dual to that of a coend, and one writes

∫
c:C S(c, c).

If it is clear from which category the (co)end is computed one need not indicate it, i. e. in most
of the following statements, the superscript m is short for m : ∆. y

Since coends are just special kind of colimits, we immediately get:

Proposition 2.4. Hom(X,
∫ c
S) ∼=

∫ c
Hom(X,S) and Hom(

∫ c
S,X) ∼=

∫
c

Hom(S,X).

Definition 2.5. Define the realization functor |−| : SimpSpace → CGWH as follows: Given a
simplicial space (or set) X•, set |X•| =

∫m
Xm × |∆m|, where Xm, in case it is “just” a set, is

given the discrete topology, and |∆m| ⊂ Rm+1 denotes the m-dimensional standard simplex from
def. 1.1; the realization of a simplicial morphism f• : X• → Y• is defined simplex-wise. y

Proposition 2.6. Let X• be a simplicial space.

(i) The realization can be explicitly computed as

|X•| =
∞∐
n=0

Xn × |∆n|

/
∼,

with (x,Di(p)) ∼ (dix, p) and (x, Si(p)) ∼ (six, p).

(ii) The space |X•| is compactly generated and weak Hausdorff.

(iii) Given a simplicial map f• : X• → Y•, |f•|([x, p]) = [fn(x), p] is well-defined and continuous.
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(iv) The realization of ∆n is indeed the standard simplex |∆n|, justifying our previous notation.

Proof. For (i), we can rephrase definition 2.3: The coend of S(m,n) = Xm×|∆n| is the coequalizer

coequ

( ∐
s∈Mor ∆Xcod s × |∆dom s|

∐
n∈Ob(∆)Xn × |∆n|

id×s∗

s∗×id

)
,

hence we “glue together” one copy of the standard n-simplex along Xn in every dimension n ∈ N
in precisely the way the cells relate to each other in X•. Explicitly, we identify (si(x), p) ∈
(Xn+1, |∆n+1|) with (x, Si(p)) ∈ (Xn, |∆n|), and (di(x), p) ∈ (Xn, |∆n|) with (x,Di(p)) ∈
(Xn+1, |∆n+1|).

To prove (ii), we observe that gluing together CGWH-spaces in this fashion yields a CGWH-
space again: We assume Xn to be CG (and WH), and since |∆n| is a (locally) compact Hausdorff
space, Xn × |∆n| is CG (and WH) [Str09, prop. 2.6]. It follows that

∐
nXn × |∆n| is CG (and

WH) by [Str09, prop. 2.2]. Modding out by ∼ retains the CG property [Str09, prop. 2.1]; but
more importantly it also preserves the WH property: the relation ∼ is obtained via continuous
functions, and combining [Str09, cor. 2.15] and [Str09, prop. 2.22] guarantees that |X•| seen as
the colimit computed in Top agrees with the colimit in CGWH.

(iii): A simplicial morphism f• : X• → Y• is a natural transformation of the involved functors X•

and Y•. The realization of f• is denoted by |f•| : |X•| → |Y•| and is defined “simplex-wise”, i. e. for
every n ∈ N, x ∈ Xn we have

|f•|
∣∣
(x,|∆n|) : {x} × |∆n| → |Y•|, (x, p) 7→ (fn(x), p) ∈ Yn × |∆n|.

The naturality of f• means there are commutative diagrams of the form

Xn+1 Xn Xn−1

Yn+1 Yn Yn−1

fn+1

si di

fn fn−1

si di

and thus the map |f•| is compatible with the relation ∼, because

|f•|(x,Di(p)) = (fn(x), Di(p)) = (di ◦ fn(x), p)

= (fn−1 ◦ di(x), p) = |f•|(dix, p), and
|f•|(x, Si(p)) = (fn(x), Si(p)) = (si ◦ fn(x), p)

= (fn+1 ◦ si(x), p) = |f•|(six, p).

(iv): It is clear that any simplex assigned to a degenerate cell “vanishes” in the realization, as
it will be identified with a face of the simplex of a nondegenerate cell; in the same way, faces
obtained from nondegenerate cells will be glued on to the corresponding simplex. So it is clear
that our notation of |∆n| is justified: it is enough to see that ∆n has only one nondegenerate
cell in dimensions ≥ n, namely id[n] ∈ ∆n[n] = Hom∆([n], [n]), and all nondegenerate cells in
dimensions < n can be obtained as faces.

Proposition 2.7. A simplicial space X• has a canonical presentation X•
∼=
∫m

Xm ×∆m[•].

Proof. For any n ∈ N, the space ∆m[n] = Hom∆op([m], [n]) carries the discrete topology, and
Xm ×∆m[n] inherits the product topology. Analogously to the proof of 2.6, we find that Xn is
homeomorphic to the quotient

Yn =

∞∐
m=0

Xm ×∆m[n]

/
(X(f) ∼ ∆f [n]).
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Certainly the maps Xn → Yn, x 7→ [x, id[n]] and Yn → Xn, [y, (s : [m] → [n])] 7→ X(s)(y) are
well-defined, continuous and compose to give the identity map on Xn resp. Yn, hence the spaces
are homeomorphic. By construction, the level-wise homeomorphisms are natural in n and thus
assemble to a simplicial isomorphism.

We will conclude this section with a classic result about simplicial sets: Giving a continuous
map from |X•| to a topological space Y is “essentially the same” as giving a simplicial morphism
X• → Sing(Y ), where Sing(Y ) = Hom(|∆•|, Y ) is the simplicial set introduced in example 1.5.

Theorem 2.8. Realization of a simplicial set is left adjoint to Sing, i. e.

HomTop(|X•|, Y ) ∼= HomS(X•,Sing(Y )).

Proof. Let X• be a simplicial set (or discrete space), and Y a topological space. We have X•
∼=∫m

Xm ×∆m naturally by proposition 2.7. Using prop. 2.4, we formally compute:

HomS(X•,Sing(Y )) ∼= HomS

(∫ m

Xm ×∆m, Sing(Y )

)
∼=
∫
m

HomS(Xm ×∆m,Sing(Y ))

∼=
∫
m

HomSet(Xm,HomS(∆m,Sing(Y )))

(∗)∼=
∫
m

HomSet(Xm,HomTop(|∆m|, Y ))

∼=
∫
m

HomTop(Xm × |∆m|, Y )

∼= HomTop

(∫ m

Xm × |∆m|, Y
)

= HomTop(|X•|, Y )

The isomorphism (∗) follows from the Yoneda lemma and characterizes the standard simplicial set
∆m (see example 1.4): HomS(∆m,Sing(Y )) ∼= Sing(Y )m = HomTop(|∆m|, Y ). All isomorphisms
are natural.

Remark 2.9. The above proof hinges on the Yoneda lemma, a statement about Hom-sets,
and the existence of an adjoint to the cartesian product in the category Set. The latter has an
analogue in the cartesian closed category CGWH, and Sing(Y ) for a CGWH-space Y could be
level-wise topologized using the compact-open topology to form a simplicial space. Enriching
Hom-sets with additional structure (such as a topology) and proving a Yoneda-type result for
functors Cop → D is possible [Kel05, section 2.4]; it is, however, beyond the scope of this text to
carefully check that this yields indeed an adjunction between realization of simplicial spaces and
the singular simplicial space functor. y

3 The Realization Functor is Finitely Continuous

We describe finite products and equalizers in the category of simplicial spaces and prove that
the realization functor preserves all finite limits.

Proposition 3.1. Let X• and Y• be simplicial spaces. Then the product X• × Y• exists and is
given level-wise by (X• × Y•)n = Xn × Yn, with structure-maps component-wise, i. e. f(x, y) =
(f(x), f(y)).
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Proof. First note that the projections X• × Y• → X• and X• × Y• → Y• are simplicial, then
note that X• × Y• is universal with respect to this property: Given a simplicial space Z• and
simplicial maps p• : Z• → X• and q• : Z• → Y•, we have a unique level-wise continuous map
(p•, q•) : Z• → X• × Y• by universality of the product in CGWH, and this map is simplicial.

Proposition 3.2. There exists a continuous bijection between the sets |X• × Y•| and |X•| × |Y•|.

Proof. Let P : |X• × Y•| → |X•| × |Y•| be defined via [(x, y), p] 7→ ([x, p], [y, p]). This map is
obviously well-defined, and allows for an inverse map P−1 : |X•|×|Y•| → |X•×Y•| as follows: Given
a point ([x, p], [y, q]) with x, y nondegenerate and p = (p0, . . . , pm) ∈ |∆m|, q = (q0, . . . , qn) ∈
|∆n|, consider the (totally ordered) set

S := {p≤j | j ≤ m} ∪ {q≤l| l ≤ n} for p≤j =

j∑
i=0

pi and q≤l =

l∑
k=0

pk

and create from it the “tuple of differences”

s = (s0, s1 − s0, s2 − s1, . . . , s|S| − s|S|−1) ∈ |∆|S|+1| (si < sj∀i < j).

It is clear by construction that we have

Si0 · · ·Sik(s) = p and Sj0 · · ·Sjl(s) = q

for a unique choice of i0 < · · · < ik and j0 < · · · < jl (each application collapsing two adjacent
coordinates by summing them up). Thus we define the map P−1 via

([x, p], [y, q]) = ([sik · · · si0(x), s], [sjl · · · sj0(y), s]) 7→ [(sik · · · si0(x), sjl · · · sj0(y)), s].

It is clear that PP−1 = id = P−1P , and P is also continuous: By functoriality of |−| the realization
of the simplicial projections are continuous, thus |proj1 | = proj1 ◦P and |proj2 | = proj2 ◦P are
continuous and by universality of the product ([Str09, prop. 2.4]) P is continuous.

Corollary 3.3. We have a homeomorphism |∆m ×∆n| ∼= |∆m| × |∆n|.

Proof. The domain is compact and the codomain is a Hausdorff space. Thus we employ a standerd
argument to show that the bijection P being continuous already implies it is a homeomorphism.
Let u : K → H be a continuous map from a compact space K to a Hausdorff space H, and let
C ⊂ K be closed. This implies C is compact, thus u(C) compact, and since H is Hausdorff, u(C)
is closed. Thus u is a closed continuous bijection, hence a homeomorphism.

The general case now follows:

Theorem 3.4. For simplicial CGWH-spaces X• and Y•, the continuous bijection P : |X• ×Y•| →
|X•| × |Y•| is a homeomorphism.

Proof. Note that CGWH is cartesian closed [Str09, 2.24], so the cartesian product has a right-
adjoint and thus preserves colimits in both factors. We formally compute:

|X• × Y•| ∼=
∣∣∣∣(∫ m

Xm ×∆m

)
×
(∫ n

Yn ×∆n

)∣∣∣∣
∼=
∣∣∣∣∫ m ∫ n

Xm × Yn ×∆m ×∆n

∣∣∣∣
∼=
∫ m ∫ n

Xm × Yn × |∆m ×∆n|

∼=
∫ m ∫ n

Xm × Yn × |∆m| × |∆n|

11



∼=
(∫ m

Xm × |∆m|
)
×
(∫ n

Yn × |∆n|
)

∼= |X•| × |Y•|

Proposition 3.5. The category SimpSpace has all equalizers of pairs of arrows, and the (sim-
plicial) equalizer E• → X• ⇒ Y• agrees level-wise with the one computed in CGWH.

Proof. Let X• and Y• be simplicial spaces, and f•, g• : X• → Y• simplicial maps. Then for n ∈ N,
the equalizer of Xn ⇒ Yn is the space En = {x ∈ Xn | fn(x) = gn(x)} topologized as a subspace
ofXn, and en : En ↪→ Xn is a closed inclusion [Str09, 3.1(b)]. Because f• and g• are by assumption
simplicial and continuous, so is e•. Thus SimpSpace has all equalizers of pairs of arrows.

Proposition 3.6. The realization functor preserves equalizers.

Proof. In the above setup, denote the equalizer in CGWH of |f•|, |g•| : |X•| → |Y•| by E, and
denote by e the closed inclusion e : E ↪→ |X•|. Since

E =
{

[σ, p] ∈
∐

Xn × |∆n|
/
∼
∣∣∣ |f•|([σ, p]) = |g•|([σ, p])

}
= {[σ, p]|[fnσ, p] = [gnσ, p]} = |E•|,

the spaces E and |E•| agree as sets and |e•| = e. By proving that |e•| is a closed inclusion, we
establish that both spaces are topologized equivalently. We know from the previous proposition
that en : En ↪→ Xn is a closed inclusion for all n, and by [Str09, 2.32], the map∐

En × |∆n| ↪→
∐

Xn × |∆n|

is a closed inclusion as well. We have the obvious quotient maps onto |E•| and |X•|, and can
now chase around open sets directly: A subset U ⊂ |E•| is open if and only if there exists V
open in

∐
En × |∆n| such that V/∼ = U , if and only if there exists W open in

∐
Xn × |∆n|

such that V = W ∩
∐
En × |∆n|. Projecting W onto the open set W/∼ ⊂ |X•|, we find that

W/∼ ∩ |E•| = (W ∩
∐
En × |∆n|)/∼ = V/∼ = U , so U ⊂ |E•| is open if and only it is open

in |E•| ⊂ |X•|. Thus |e•| is a closed inclusion, and therefore both E and |E•| carry the subspace
topology.

Remark 3.7. Given a cyclic space, we will later be interested in the space of fixed points under a
certain group-action. Let us for now remark that if a space X• comes with a level-wise simplicial
G-action, for G a finite cyclic group, then the space of fixed points under this action is the
equalizer of the identity map and multiplication by the generator g of G, denoted by µg. By the
preceding statement we find:

|XG
• | = |{x | g · x = x}| =

∣∣∣∣eq

(
X• X•

id•

µg

)∣∣∣∣ ∼= eq

(
|X•| |X•|

id

|µg|

)
= |X•|G,

where the action of G on |X•| is understood to be induced by µg. y

We quickly collect evident statements about terminal objects in both categories:

Remark 3.8. The category CGWH has a terminal object, the one-point space {∗}. The category
SimpSpace has a terminal object, namely the terminal object of CGWH in every dimension n.
The realization functor preserves the terminal object. y

We wrap up the section with a generalized statement about the preservation of limits:

Theorem 3.9. The realization functor is finitely continuous, i. e. it preserves all finite limits.

12



Proof. The limit of the empty diagram is preserved by the previous remark. It is a well-known
category-theoretical fact that if a category has a terminal object, all binary products and all
equalizers of pairs of arrows, then it has all finite limits (and is called finitely complete); in case
the indexing diagram is not empty, this limit can be explicitly constructed as the equalizer of
finite products as outlined in [ML98, V.2 Thm. 1]. Since realization preserves both binary (and
thus by induction finite) products and equalizers, it preserves all finite limits.

4 Realization, Cofibrations and Weak Equivalences

This section is devoted to studying the realization functor, and how it behaves with respect to
cofibrations and weak equivalences. Hence we are mainly concerned with simplicial spaces and
not just simplicial sets (which are equivalent to discrete spaces, and not very interesting for this
discussion).

Specifically, given a map f• : X• → Y• of simplicial spaces, we are interested in the following two
questions:

1. If f• is a level-wise weak equivalence, is |f•| a weak equivalence, too?

2. If f• is a level-wise cofibration, is |f•| a cofibration, too?

For the convenience of the reader, we will quickly recall two standard definitions tuned to our
setup:

Definition 4.1. A continuous map f• : X• → Y• is a levelwise weak equivalence if for all n ∈ N
it induces isomorphisms on all homotopy groups, i. e. for all n ∈ N and base points x0 ∈ Xn, the
induced map πi(Xn, x0)

∼=−→ πi(Yn, fn(x0)) is an isomorphism for all i ∈ N.

The map is a levelwise cofibration if fn is a cofibration for all n ∈ N. A (Hurewicz-)cofibration
must satisfy the homotopy extension property (HEP) which states that for all spaces Z, initial
conditions c : Yn → Z and homotopies h : Xn → ZI , we can extend h to a homotopyH : Yn → ZI

with ev0 ◦H = c. Put differently, the dashed arrow in the following diagram must exist:

Xn ZI

Yn Z

h

fn ev0

c

H

y

It turns out that without some “goodness” condition on the spaces the realization functor will not
send level-wise weak equivalences (resp. cofibrations) to weak equivalences (resp. cofibrations).
The relation disi = id from (1op) already implies that all degeneracies si are closed inclusions
(cf. [Str09, 2.29]), but we need a slightly stronger property:

Definition 4.2. A simplicial space X• is called good if all degeneracies are cofibrations. y

To convince the reader that some goodness assumptions on the spaces X• and Y• are needed at
all, we give a counterexample3 where one space has a degeneracy map that is not a cofibration.

3The idea is due to Tyler Lawson as described in http://mathoverflow.net/a/171423.
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Example 4.3. Denote byN the subspace {0}∪{ 1
2 ,

1
3 ,

1
4 , . . .} ⊂ R, and byNd the same set but this

time with the discrete topology. The bijection Nd → N is continuous but not a homeomorphism.
While {0} includes into Nd as a cofibration, the map {0} ↪→ N is the standard example of a
closed inclusion that is not a cofibration.

Define X0 = Y0 = {0}, and denoting by 0 the base-point of N and Nd, set Xn =
∨n
i=1Nd and

Yn =
∨n
i=1N . The face and degeneracy maps of Y• are given as follows, and for X• they are

defined completely analogously:

di :

n∨
j=1

N(j) →
n−1∨
j=1

N(j), x 7→


0, x ∈ N(1) and i = 0

x ∈ N(k−1), x ∈ N(k), 0 ≤ i ≤ k
x ∈ N(k), x ∈ N(k), i > k

si :

n−1∨
j=1

N(j) →
n∨
j=1

N(j), x 7→

{
x ∈ N(k), x ∈ N(k) for k < i

x ∈ N(k+1), x ∈ N(k) for k ≥ i

The di and si are certainly continuous for X• and Y•, and the simplicial relations are satisfied,
so we have two simplicial spaces. But since the degeneracy Y (s0) : Y0 → Y1 is not a cofibration,
the map id• : X• → Y• is not a map of good simplicial spaces.

Since both N and Nd are totally disconnected, we have π0(Xn, x0) ∼= π0(Yn, x0) ∼= N for all
n ≥ 1 and basepoints x0, and all homotopy groups in dimension n ≥ 1 are trivial, so id• is a
level-wise weak equivalence. But the realization | id• | : |X•| → |Y•| is not a weak equivalence as
will be shown.

Both simplicial spaces feature the same underlying sets, and have a single 0-cell. The 1-cells are
given by the spaces N and Nd, respectively (and it is important here that they differ, because
both encode a different topological relation between the simplices). All higher-dimensional cells
are degenerate, hence don’t influence the realization. The realization of ∆1 is homeomorphic to
the unit interval I = [0; 1] ⊂ R, and we have

|X•| ∼= ({∗} tNd × I)/ {∗} ∼ (Nd × {0, 1} ∪ {0} × I) and
|Y•| ∼= ({∗} tN × I)/ {∗} ∼ (N × {0, 1} ∪ {0} × I)

The realizations of X• and Y• are the same sets, but carry different topological information: Since
Nd is discrete, any open set in {x} × (I − {0, 1}), is an open set in |X•|, too. Therefore the
realization of X• is homeomorphic to a (countable) wedge of S1’s. This implies its fundamental
group is freely generated on a countable set of generators.

On the other hand, |Y•| is homeomorphic to the Hawaiian Earring, i. e. the space

H =

∞⋃
n=1

{
z ∈ C

∣∣∣∣∣∣∣∣z − 1

n

∣∣∣∣ =
1

n

}
⊂ C.

This homeomorphism can be understood by “bending” the ends of N × I, which are identified to
a point ∗, towards 0 ∈ C; a compact-to-Hausdorff argument confirms that this map is indeed a
homeomorphism. The fundamental group of the Hawaiian Earring is not even free [DS92], thus
| id• | cannot induce an isomorphism on the fundamental groups and therefore it is not a weak
equivalence. See figure 1 for a graphical representation that highlights the topological differences
between the two realizations. y

We now prepare statements for the case where we have a map between two good simplicial spaces.
The following definitions and observations are adapted from Waldhausen [Wal85, 1.1–2]:

Definition 4.4. A category with cofibrations is a category C together with a subcategory co C,
whose morphisms are called cofibrations and are denoted by “arrows with tails” • � •. The
cofibration subcategory must satisfy the following three axioms:
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·
·
· · · ·

Figure 1: The realization of X• on the left is a countable wedge of circles, and each circle without
basepoint 0 is an open set. The realization of Y• on the right differs insofar as N carries
a different topology than the discrete Nd, and thus the realized 1-simplices, which are
the circles, are “near to one another” in a neighborhood of 0. The topology of H is
coarser and admits “more” continuous maps S1 → H, including loops that go around
an infinite number of circles (see [DS92] for a detailed construction). This makes a
difference for the fundamental group functor π1(−), and |X•| and |Y•| cannot be weakly
equivalent.

Cof. 1 Isomorphisms of C are cofibrations,

Cof. 2 The inclusion of the initial object is a cofibration and

Cof. 3 Cofibrations admit cobase change.

Similarly, a category with weak equivalences has a subcategory with weak equivalence morphisms
satisfying

Weq. 1 Isomorphisms of C are weak equivalences and

Weq. 2 The gluing lemma (see 4.9) holds.

Weak equivalences are denoted by • ∼−→ •. y

Proposition 4.5. The category of compactly generated weak Hausdorff spaces CGWH with the
usual notion of cofibration (via the homotopy extenision property, HEP, for all spaces) and weak
equivalence (via induced isomorphisms on homotopy groups) is a category with cofibrations and
weak equivalences.

Proof. Homeomorphisms are both cofibrations and weak equivalences. The initial object in un-
pointed CGWH-spaces is the empty space ∅, which trivially includes as a cofibration into any
space Z. Cofibrations admit cobase change [Die08, Prop. 5.1.8].

A corresponding statement about weak equivalences is also true: The pushout of a weak equiva-
lence along a cofibration is again a weak equivalence; see the following lemma 4.6. This property
is also known as left-properness, and is required for (and, indeed, equivalent to) the gluing lemma,
which is proved further down in lemma 4.9. Let us at this point remark that the saturation axiom
[Wal85, p. 327] for weak equivalences holds in CGWH: For any two composable maps a and b, if
any two of the three possibilities a, b, and a ◦ b are weak equivalences, then so is the third. This
two-out-of-three argument is immediate if one thinks of the induced triangle in homotopy groups
where two of the three maps are isomorphisms.

Lemma 4.6 (Left-Properness). The category CGWH is left-proper, i. e. the pushout of a weak
equivalence along a (Hurewicz-)cofibration yields again a weak equivalence.
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Proof. Given a pushout square

A B

C P

f

∼

i
p

I

F

with i (and thus by cobase change I) a cofibration, and f a weak equivalence, we need to show
that F is a weak equivalence. The stronger assumption that f is a homotopy equivalence implies
that F is a homotopy equivalence (cf. [Die08, 5.1.10]) and therefore a weak equivalence.

We can without loss of generality reduce the problem to the class of squares where f is a weak
equivalence and a cofibration simultaneously (such a map is commonly referred to as an acyclic
cofibration). Any continuous map factors as a cofibration followed by a homotopy equivalence
[Die08, 5.3]. We can thus factor f as h ◦ j as follows, where M(f) = A × I ∪f B denotes the
mapping cylinder:

A M(f) B

C P ′ P

j

i

p p
I

h-eq
h

J H

h-eq

Note that since the inner left hand square and the outer rectangle are both pushouts, so is the
inner right hand square (“pasting of pushout diagrams”). By cobase change, I is a cofibration,
and since h is a homotopy equivalence, H is one, too. Two-out-of-three yields that j is a weak
equivalence (and a cofibration). We will show via CW-approximation that J is a weak equivalence,
too, so the composition H ◦ J = F is a weak equivalence.

With this argument we can reduce to the case that f is a cofibration. We use the CW-approximation
functor Γ from [May99, Ch. 10, sec. 5–7] and the machinery subsequently developed there. First
note that a pair of spaces (A,C) has a CW-approximation (ΓA,ΓC) with ΓA a subcomplex of
ΓC. Subcomplexes include as cofibrations [Die08, 8.3.9], so Γ preserves cofibrations.

Because both i and f are cofibrations, we can regard A as B ∩ C and P as B ∪ C. In general,
the triad (P ;B,C) will not be an excisive triad (which needs P = B̊ ∪ C̊); however, with the
“simple, but important general construction” around the lemma in [May99, p. 80], this triad
is homotopy-equivalent to an excisive triad (also cf. [Die08, 5.3.4], which is the gluing lemma
for homotopy equivalences). Hence we can apply the CW-approximation for the triad (P ;B,C)
because it is w. l. o. g. excisive. This yields a cube diagram with diagonal maps γ that are weak
equivalences:

A B

ΓA ΓB

C P

ΓC ΓP

f

∼

i
p

Γf

γ

Γi

p

γ

F

γ γ

By two-out-of-three, the assumption that f is a weak equivalence implies that Γf is a weak
equivalence. The Whitehead theorem [May99, p. 76] implies that this weak equivalence of CW-
complexes is in fact a homotopy equivalence. Pushing out Γf along the cofibration Γi yields a
homotopy equivalence ΓC → ΓP , which is also a weak equivalence. A two-out-of-three argument
shows that F is a weak equivalence, finishing the proof.
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Definition 4.7. Let C be a category with cofibrations and weak equivalences, and consider a
square (A� B)→ (A′� B′). By forming the pushout P of A′ ← A� B, we obtain a diagram
of the form

A B

P

A′ B′

p

(4)

where the map P = A′∪AB → B′ is uniquely determined by the pushout’s universal property. If
the maps A� A′ and P � B′ are cofibrations, the square (4) is called a Waldhausen cofibration
square. If A ∼−→ A′ and P

∼−→ B′ are weak equivalences, (4) is called a Waldhausen weak
equivalence square. y

Lemma 4.8. We state three fairly simple, but important observations about diagrams of this
shape in CGWH:

(i) Given a Waldhausen cofibration square, all maps in it are cofibrations, in particular B �
B′. In a Waldhausen weak equivalence square, B ∼−→ B′ is a weak equivalence.

(ii) If A � A′ and B � B′ in (4) are cofibrations, and A = A′ ∩ B ⊂ B′, the square is a
Waldhausen cofibration square and in particular P � B′ is a cofibration.

(iii) If A ∼−→ A′ and B
∼−→ B′ are weak equivalences, the square (4) is a Waldhausen weak

equivalence square and in particular P ∼−→ B′ is a weak equivalence.

Proof. (i) Cobase change yields a cofibration B � P , and composition with P � B′ yields
a cofibration B � B′. Analogously, a weak equivalence A ∼−→ A′ determines by left-
properness a weak equivalence B ∼−→ P , and composition with P ∼−→ B′ again yields weak
equivalence.

(ii) Note that A = A′ ∩ B includes into B′ as a cofibration. The only map to check to obtain
the claim is the induced map P → B′, uniquely determined by A′ � B′ and B � B′. In
CGWH, all cofibrations are closed inclusions ([Str09, Cor. 2.29] in conjunction with [Die08,
5.1.2]). It follows by Lillig’s cofibration union theorem (repeated in [Die08, 5.4.5]), that this
map, which is the union of two closed cofibrations, is again a cofibration.

(iii) By left-properness, B ∼−→ P is a weak equivalence, and B ∼−→ B′ is one by assumption. By
two-out-of-three, P ∼−→ B′ is a weak equivalence.

Lemma 4.9 (Gluing Lemma). Given a cube diagram in CGWH with front and back face pushouts,
i and j cofibrations, and weak equivalences α, β and γ:

A′ B′

A B

C ′ D′

C D

j
pα

i

p

β

γ δ

Then the map δ is a (uniquely determined) weak equivalence.
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Proof. Similarly to the proof of lemma 4.6, we “factor” the cube’s top face by factoring the map
A → B as a cofibration into the mapping cylinder MA followed by a homotopy equivalence. In
the following diagram the left square is a pushout, by left-properness the map MA

∼−→ P is
a weak equivalence and the map P

∼−→ B′, which is uniquely determined, is therefore a weak
equivalence by two-out-of-three:

A MA B

A′ P B′

α∼ p

∼

∼ β∼

∼
!

Thus it is enough to prove the lemma under the additional assumption that both top horizontal
maps are a) cofibrations or b) weak equivalences. The latter is straightforward: If A → B and
A′ → B′ are weak equivalences, immediately C ∼−→ B ∪A C and C ′

∼−→ B′ ∪A′ C ′. Together
with the given weak equivalence γ : C

∼−→ C ′ and a two-out-of-three argument we find that δ is
a weak equivalence.

Assuming the maps A → B and A′ → B′ are cofibrations, we can construct the desired weak
equivalence by composing two weak equivalences obtained in the following fashion:

A C C ′

B B ∪A C B ∪A C ′

p p
∼

∼
(1)

and

A A′ C ′

B B ∪A A′ C ′ ∪A B

B′ B′ ∪A′ C ′

∼

p p

∼

∼ ∼!
p ∼(2)

Note that the arrow marked with an exclamation mark is a weak equivalence because it is part
of the Waldhausen weak equivalence square (A

∼−→ A′) � (B
∼−→ B′), and therefore (2) is a

weak equivalence. Then B ∪A C
∼−→ B ∪A C ′ = C ′ ∪A B

∼−→ B′ ∪A′ C ′ is the desired weak
equivalence.

Definition 4.10. Let X• be a simplicial space. The space LnX =
⋃n−1
i=0 si(Xn−1) ⊆ Xn is called

the n-th latching object of X•, and the inclusion LnX ↪→ Xn is called the n-th latching map. If
LnX is a cofibration for all n ∈ N, then X• is called Reedy-cofibrant. y

Proposition 4.11. A simplicial CGWH-space X• is Reedy-cofibrant if and only if all degenera-
cies si are cofibrations.

Proof. We show by induction on n that LnX � Xn is a cofibration iff all degeneracies are
cofibrations. The case n = 1 is clear: L1X = s0(X0)� X1 iff s0 is a cofibration. Assume n > 1,
then we construct the latching object LnX using the following pushout (of inclusions) on the
right repeatedly:

⋃k−1
i=0 si(Xn−2) sk

(⋃k−1
i=0 si(Xn−2)

) ⋃k−1
i=0 si(Xn−1)

Xn−1 sk(Xn−1)
⋃k
i=0 si(Xn−1)

sk

p

sk

(5)

Indeed this is a pushout: Using the simplicial relations (1op), for x, x′ ∈ Xn−1 with sk(x) = si(x
′),

i < k, we have x = dksk(x) = dksi(x
′) = sj(y) for some y ∈ Xn−2 and j = i− 1 or j = i.

Assume X• is Reedy-cofibrant. Then for all k the map
⋃k−1
i=0 si(Xn−1) �

⋃k
i=0 si(Xn−1) is a

cofibration: In the base case k = 0, the diagram is the pushout of s0(Xn−1) ← ∅ → ∅, and
trivially ∅ � s0(Xn−1) is a cofibration. By induction hypothesis on n and Reedy-cofibrancy,

18



there is a composite cofibration
⋃k−1
i=0 si(Xn−2)� Ln−1X � Xn−1. The si are homeomorphisms

onto their image, and by cobase change we obtain
⋃k−1
i=0 si(Xn−1) �

⋃k
i=0 si(Xn−1). Thus the

composition si : Xn−1 � LnX � Xn is a cofibration for all i.

Now assume all degeneracies are cofibrations. Again by induction on k ≤ n and cobase change
we directly obtain cofibrations

⋃k−1
i=0 si(Xn−1) �

⋃k
i=0 si(Xn−1). We inductively construct a

cofibration LnX � Xn: By induction hypothesis on k,
⋃k−1
i=0 si(Xn−1)� Xn is a cofibration, and

by assumption sk(Xn−1)� Xn is a cofibration. By the Waldhausen cofibration square property,⋃k
i=0 si(Xn−1)� Xn is a cofibration for all k. In particular, LnX � Xn is a cofibration.

Definition 4.12. Let X• be a simplicial space. The n-skeleton of the realization is, for n ∈ N,
defined as

Skn |X•| = coequ

( ∐
f∈Mor ∆|n Xcod f × |∆dom f |

∐
m∈Ob(∆|n)Xm × |∆m|

id×f

fop×id

)
,

where ∆|n is the full subcategory of ∆ with objects [0], . . . , [n] (and hence f ∈ Mor ∆|n implies
dom f, cod f ⊆ [n]). y

Proposition 4.13. The skeleta can be obtained iteratively via the following pushout:

PXn Skn−1 |X•|

Xn × |∆n| Skn |X•|

p

Proof. It is enough to consider the non-degenerate simplices of dimension n. Note that we have
coverings

∐
si
Xn−1 × |∆n| → Ln × |∆n| and

∐
di
Xn × |∆n−1| → Xn × ∂|∆n|. We define

PXn := LnX × |∆n| ∪LnX×∂|∆n| Xn × ∂|∆n| ⊆ Xn × |∆n|.

The map to Skn−1 |X•| is determined by the canonical maps into the skeleton, which is a quotient:

LnX × |∆n| → Skn−1 |X•|, (six, p) 7→ (x, Sip) ∈ Xn−1 × |∆n−1|
Xn × ∂|∆n| → Skn−1 |X•|, (x,Dip) 7→ (dix, p) ∈ Xn−1 × |∆n−1|

Because colimits commute, we immediately get:

Corollary 4.14. |X•| ∼= colim
n

Skn |X•|.

Theorem 4.15. Let f• : X• → Y• be a map of good simplicial CGWH-spaces, such that
fn : Xn → Yn is a weak equivalence for all n ∈ N. Then |f•| : |X•| → |Y•| is a weak equiva-
lence.

Proof. This proof follows the sketch given in [Dug08, Thm. 3.5].

Step 1: There exists a weak equivalence LnX → LnY for all n.
This is clear in for the cases L0X = ∅ = L0Y and L1X = s0(X0) ∼= X0

f0→ Y0
∼= s0(Y0) = L1Y .

For n ≥ 2, we use the inductive construction diagram (5) from proposition 4.11 above for the
latching objects LnX and LnY : There is an obvious weak equivalence sk(Xn−1)→ sk(Yn−1) via
fn−1 for all k ≤ n by assumption. Inductively, the gluing lemma yields (unique) weak equivalences⋃k
i=0 si(Xn−1)→

⋃k
i=0 si(Yn−1) for all k ≤ n. In the case k = n we obtain the desired equivalence

LnX → LnY .
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Step 2: There exists a weak equivalence of the n-skeleta of |X•| and |Y•|.
Again, this is obvious in the case n = 0, where we have Sk0 |X•| ∼= X0 × {∗}

f0×id−→ Y0 × {∗} ∼=
Sk0 |Y•|, and by assumption f0 is a weak equivalence.

For the induction step, consider the following diagram. The front and back rectangles are
pushouts, and the diagonal maps that are marked as weak equivalences are the obvious ones
obtained either via the latching object equivalence from step 1, the given weak equivalence fn,
or by induction hypothesis on the (n− 1)-skeleta.

LnY × ∂|∆n| LnY × |∆n|

LnX × ∂|∆n| LnX × |∆n|

Yn × ∂|∆n| PYn Skn−1 |Y•|

Xn × ∂|∆n| PXn Skn−1 |X•|

Yn × |∆n| Skn |Y•|

Xn × |∆n| Skn |X•|

p

p

∼ ∼

p∼

p

∼

∼

By assumption all degeneracies are cofibrations, and proposition 4.11 implies that the latching
maps are cofibrations; obviously, ∂|∆n|� |∆n| is a cofibration, too. Notice that the upper left
pushout together with the two maps LnX × |∆n|� Xn × |∆n| and Xn × ∂|∆n|� Xn × |∆n|
is a Waldhausen cofibration square, and thus PXn � Xn × |∆n| is a cofibration; it follows that
Skn−1 |X•|� Skn |X•| is a cofibration, too. Exchanging X and Y yields mirror statements.

The gluing lemma for the upper left cube yields a weak equivalence PXn
∼−→ PYn , and applying

it again for the lower right cube, we obtain the dashed arrow as (unique) weak equivalence
Skn |X•| ∼−→ Skn |Y•|.

Step 3: We have seen that the skeleta include as cofibrations, and in CGWH this implies
(cf. [Str09, Lemma 3.6]) that the diagram

Sk0 |X•| Sk1 |X•| · · · Skn |X•| Skn+1 |X•| · · ·

is strongly filtered, i. e. any continuous K → colimn Skn |X•|, K compact, factors through Ski |X•|
for some i. In particular this is true for the n-spheres Sn. Thus |X•| and |Y•| are weakly equivalent.

An analogous result is true for levelwise cofibrations:

Theorem 4.16. Let f• : X• → Y• be a map of good simplicial CGWH-spaces, such that
fn : Xn → Yn is a cofibration for all n ∈ N. Then |f•| : |X•| → |Y•| is a cofibration.

Proof. The previous proof relies mainly on the gluing lemma for weak equivalences (4.9), for
which we shall establish an analogous result in the case that the diagonal maps α, β and γ are
cofibrations: Then δ is also a cofibration.

We need not prove this manually, but instead employ machinery developed by Waldhausen
for [Wal85, Lemma 1.1.1]. The category F1CGWH has as objects cofibrations A � B be-
tween CGWH-spaces, and morphisms are the obvious commutative squares. The cofibrations
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coF1CGWH of this category are the Waldhausen cofibration squares, i. e. those squares (A �
B)→ (A′ � B′) with A� A′ and A′ ∪A B � B′ CGWH-cofibrations. The lemma states that
coF1CGWH makes F1CGWH into a category with cofibrations, in particular the pushouts exist.

Take the same cube diagram as in the gluing lemma 4.9, but suppose α, β and γ are cofibrations
and A = A′∩C. By lemma 4.8 (ii) the square of cofibrations is a Waldhausen cofibration square,
so the left vertical map is a cofibration in F1CGWH. Thus the cube diagram translates to the
following pushout diagram in F1CGWH:

(A
α
� A′) (B

β
� B′)

(C
γ
� C ′) (D

δ
� D′)

p

Important is not that the stronger fact that the righthand vertical map is a cofibration; it is
enough that the pushout object exists, since this already is the desired cofibration of CGWH-
spaces D� D′.

With the gluing lemma alone we obtain:

1. The latching maps LnX � LnY are cofibrations and

2. The skeleta include as cofibrations Skn |X•|� Skn |Y•|.

Lastly, we need to see that the cofibrations are stable under taking the (sequential) colimit. We
have a “ladder of cofibrations”

· · · Skn−1 |X•| Skn |X•| Skn+1 |X•| · · ·

· · · Skn−1 |Y•| Skn |Y•| Skn+1 |Y•| · · ·

and lemma 4.17 below implies that |X•|� |Y•| is a cofibration, completing the proof.

Lemma 4.17. Let A0 � A1 � A2 � · · · and B0 � B1 � B2 � · · · be two sequential diagram
of cofibrations, and denote their respective colimits by A = colimAi and B = colimBi. Then:

1. For all i ∈ N, Ai� A and Bi� B are cofibrations.

2. If Ai� Bi are cofibrations for all i ∈ N, then the induced map A� B is a cofibration.

Proof. By truncating the sequence, it is enough to prove A0 � A is a cofibration. Assume a
homotopy H0 : A0 × I → X and a map G : A → X with G|A0 = H0(−, 0). We want to extend
H0 to a homotopy H : A× I → X such that H(−, 0) = G.

We can construct the extension H1 : A1 × I → X with H1(−, 0) = G|A1 by using the homotopy
extension property for the cofibration A0 � A1. Inductively, we obtain homotopiesHn : An×I →
X for all n. The space A carries the final topology, so the inclusions ai : Ai → A are continuous,
and a map f : A → X is continuous iff f ◦ ai is continuous for all i. Define the map H as the
union of all Hi, i ≥ 0. This is well-defined, and since H ◦(ai× idI) = Hi for all i, H is continuous.
Clearly H|A0×I = H0 and H(−, 0) = G, so H extends H0 in the desired way. Thus the HEP is
satisfied, and A0 � A is a cofibration.

For the second statement, consider a homotopy HA : A× I → X, which we wish to extend along
some G : B → X. For each i, we have a homotopy HA,i = HA ◦ (ai × idI) : Ai × I → X which
we can extend via the cofibration Ai� Bi to a homotopy HB,i with HB,i(−, 0) = G|Bi

. Again,
the union of the HB,i constitutes the desired homotopy HB : B × I → X that extends HA and
has HB(−, 0) = G.
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Corollary 4.18. Given a levelwise cofibration sequence of good simplicial spaces A• � X• �
X•/A•, the sequence |A•|� |X•|� |X•/A•| is a cofibration sequence, too.

Proof. By [Str09, 2.17], the equivalence relation ∼ is compatible with realization in the sense
that the natural map |X•/A•| → |X•|/|A•| is a homeomorphism.

5 Realizations of Cyclic Spaces exhibit an SO(2)-action

So far we have only looked at the realization of simplicial spaces. This section establishes the
important fact that realizations of cyclic spaces carry a canonical “circle action” of the group
SO(2).

Definition 5.1. Let X• be a cyclic space. The realization of X• is defined via the composition

CycSpace SimpSpace CGWH,
j∗ |−|

i. e. as the realization of the underlying simplicial space. For short, one writes |X•| for |j∗X•|. y

Note. The proof of theorem 5.9 provides a rationale why one need not define a specific realization
functor for cyclic spaces.

Remark 5.2. We introduce new notation for the common situation of switching between dif-
ferent canonical representations of morphisms in Λ.

Given a morphism f ◦ g ∈ Λn[m] with f ∈ Hom∆([m], [n]) and g ∈ Cop
m+1, then by applying the

cocyclic relations, there exists a unique decomposition

f ◦ g = f←(g) ◦ g→(f), with f←(g) ∈ Cop
n+1 and g→(f) ∈ Hom∆([m], [n]).

For example, in the case f = σn, g = τ2
n+1, we have σnτ2

n+1 = τnσ0 = f←(g)g→(f). For the
analogous case g ◦ f with f ∈ Hom∆([m], [n]) and g ∈ Cop

n+1, we write:

g ◦ f = g→(f) ◦ f←(g), with g→(f) ∈ Hom∆([m], [n]) and f←(g) ∈ Cop
m+1.

As a mnemonic device, think of f←(g) as “g, after an f was moved from right of g to the left of
g”. y

Example 5.3. As a motivating example and because it will play a crucial role in later proofs,
we will study the cyclic set of cyclic groups C• in detail (cf. [Lod98, 6.1.9–10]). It consists of the
(opposite) cyclic groups (Cop

n+1)n∈N (regarded as sets), and the morphisms induced by the unique
decomposition presented in prop. 1.10: Let f ◦ g ∈ Hom∆([m], [n]) × Cop

m+1
∼= HomΛ([m], [n]).

Then applying the structure map (f ◦ g)op : [n]→ [m] to c ∈ Cop
n+1 yields:

(f ◦ g)op(c) = c ◦ f ◦ g = c→(f) ◦ f←(c) ◦ g,

where f←(c) ◦ g ∈ Cop
m+1 is uniquely determined. The mapping (f ◦ g)op(c) 7→ f←(c) ◦ g is

functorial, and hence we have a cyclic structure on C•.

To describe this structure more explicitly, we say what the torsion, face and degeneracy maps do.
Given c ∈ Cop

n+1, tn acts in the obvious way by multiplication, and we have tn+1
n (c) = cτn+1

n = c.
Hence it’s justified to think of τn as the generator of Cop

n+1
∼= AutΛop([n]) = 〈τn〉.

Using the cyclic relations (2op), we can see what the face and degeneracy maps do on the
generators τn:

di(τn) = τnδi = τn−1, 1 ≤ i ≤ n; d0(τn) = id

si(τn) = τnσi = τn+1, 1 ≤ i ≤ n; s0(τn) = t2n+1

Note in particular that the generators of Cop
n+1 = 〈τn〉 for n ≥ 2 are degenerate because s1(τn) =

τn+1, and thus all n-cells are degenerate for n ≥ 2. y
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Note. We denote by S1 = {z = a+ ib ∈ C ||z| = 1} ⊂ C the (pointed) topological space, ob-
tained for example as a CW-complex with one 0-cell and a single 1-cell. In contrast, to make clear
that we are interested in the rotational group structure of the object, we use the (topological)
group SO(2), also called the circle group. Since we will need to compare different circle actions,
we will often write the circle component as R/aZ for some a and silently assume the standard
identification with SO(2).

Proposition 5.4. |C•| = R/Z ∼= S1 ∼= SO(2)

Proof of Proposition. In dimension 0, we have a single cell τ0 = id. We have
a 1-cell τ1 which has d0(τ1) = τ0 = d1(τ1), and since s0(τ0) = τ2

1 = id 6=
τ1, this 1-cell is nondegenerate. The generators of all n-cells, n ≥ 2, are
degenerate, and therefore do not influence the realization.

τ1

τ0

Remark 5.5. Since HomΛop([m], [n]) ∼= Hom∆op([m], [n]) × Cn+1, and ∆0 = Hom∆op([0],−) is
a singleton, we have C• ∼= Λ0. The realization of ∆0 is a single point {∗}, so the proposition
shows that |Λ0| ∼= SO(2) ∼= SO(2) × |∆0|. The realization |Λ0| admits an obvious SO(2)-action:
multiplication on the left on SO(2), and trivial action on the other component; in fact this is
true in all dimensions, as lemma 5.7 will show. The goal of this section is to generalize this to
the realization of arbitrary cyclic spaces: They all carry a canonical SO(2)-action. y

Remark 5.6. Since τ1 generates C•, τ im is the image of an application of degeneracies; in par-
ticular, in C• we have

sj0(τ im) = τ imσ
j
0 = τ i−1

m σmτ
2
m+1σ

j−1
0 = τ i−1

m+1τ
2
m+1σ

j−1
0 = τ i+1

m+1σ
j−1
0 = · · · = τ i+jm+j

and with sj1(τ1) = τ1σ
j
1 = τj+1 we obtain

si−1
0 sm−i1 (τ1) = si−1

0 (τm−i+1) = τ im.

The element τ0
m = τm+1

m = id is generated by sm1 s0d0(τ1).

Thus in the quotient |Λ0| =
∐
Cm+1 × |∆m|/ ∼, a point [τ im, (p0, . . . , pm)] has a canonical

representative using the generator τ1 of C•, namely

i = 0,m+ 1 : [sm1 s0d0(τ1), (p0, . . . , pm)] = [τ1, (0, p0 + · · ·+ pm)] = [τ1, (0, 1)]

1 ≤ i ≤ m : [si−1
0 sm−1

1 τ1, (p0, . . . , pm)] = [τ1, S
m−1
1 Si−1

0 (p0, . . . , pm)]

= [τ1, (p0 + · · ·+ pi−1, pi + · · ·+ pm)]

or equivalently, by identifying |Λ0| = |C•| ∼= R/Z through projection onto the second coordinate,
pi + · · ·+ pm + Z = 1− (p0 + · · ·+ pi−1) + Z =: θ + Z ∈ R/Z. y

Lemma 5.7. There exists an isomorphism of cocyclic spaces |Λ•| ∼= SO(2) × |∆•|. The cocyclic
structure maps are equivariant with respect to the canonical SO(2)-action.

Proof. We first establish the homeomorphism |Λn| ∼= SO(2)× |∆n| for all n and then proceed to
show that the objects are compatible with the cocyclic structure maps.

Consider the map hn : |Λn| → |Λ0×∆n| given by sending [x◦g, p] 7→ [(g−1, x), g(p)], where when
applying an element g (or, in the proof, f←(g) ∈ Cop

m+1), we use the cocyclic structure of “rotation
of corners” on |∆m| (cf. example 1.9). The map is well-defined: Given f ∈ Hom∆([m], [m′]), we
have4

hn[f(x ◦ g); p] = hn[x ◦ g ◦ f ; p]

= hn[x ◦ g→(f) ◦ f←(g); p]

4 Note that we use a shorthand notation here, e. g. a statement [f(x), p] = [x, f(p)] would read, if spelled out
explicitly, [∆n[fop](x), p] = [x, |∆n[f ]|(p)].
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= [f←(g)−1, x ◦ g→(f); f←(g)(p)]

(∗)
= [g−1 ◦ g→(f), x ◦ g→(f); f←(g)(p)]

= [g−1, x; g→(f)f←(g)(p)]

= [g−1, x; gf(p)]

= hn[x ◦ g; f(p)].

The equality marked (∗) holds because of gf = g→(f)f←(g) ⇔ ff←(g)−1 = g−1g→(f), and
ff←(g)−1 in C• = Λ0 equals f←(g)−1. Clearly, the map hn is a homeomorphism with inverse
h−1
n : [(h, y), q] 7→ [y ◦ h−1, h(q)].

The desired homeomorphism is given by the composition

|Λn| |Λ0 ×∆n| |Λ0| × |∆n| |Λ0| × |∆n|,hn ∼= h0×id

which sends

[x ◦ τ im, (p0, . . . , pm)] 7→ ([τ im, (p0, . . . , pm)], [x, τ im(p0, . . . , pm)])

corresponding to the following point in SO(2)× |∆n|:

([τ1, (p0 + · · ·+ pi−1, pi + · · ·+ pm)], [x, (pi, . . . , pm, p0, . . . , pi−1)]) =: (θ, u),

where u = (u0, . . . , un) is given by [id, x(pi, . . . , pm, p0, . . . , pi−1)], i. e. relative to the generator of
∆n. Applying tn to Λn[n] induces the map Tn : (θ;u0, . . . , un) 7→ (θ − u0;u1, . . . , un, u0), which
clearly has Tn+1

n = id.

The simplicial structure maps induced from di and si are the identity on the SO(2) component,
and the usual maps on |∆n|. One can easily see that the cocyclic relations are fulfilled, e. g.

TnD0(θ;u0, . . . , un−1) = Tn(θ; 0, u0, . . . , un−1) = (θ;u0, . . . , un−1, 0)

= Dn(θ;u0, . . . , un−1)

TnS0(θ;u0, . . . , un+1) = Tn(θ;u0 + u1, u2, . . . , un+1)

= (θ − (u0 + u1);u2, . . . , un+1, u0 + u1)

= Sn(θ − u0 − u1;u2, . . . , un+1, u0, u1)

= SnT
2
n+1(θ;u0, u1, . . . , un+1).

The SO(2)-action on SO(2) × |∆n| is left-multiplication on the first, and the identity on the
second coordinate: In particular Tn is SO(2)-equivariant. Thus the {SO(2)× |∆n|}n∈N assemble
to a cocylic space SO(2)× |∆•| with SO(2)-equivariant structure maps.

Remark 5.8. The homeomorphism |Λn| ∼= R/Z× |∆n| is not as straight-forward as one might
imagine at first. There are two reasons why we cannot go for a “simpler” approach.

First, given an element f ◦ g ∈ Λn[m], the projection Λn[m] → Λ0[m], f ◦ g 7→ g is simplicial,
but Λn[m] → ∆n[m], f ◦ g 7→ f is not (and hence the realization of this projection is not well-
defined): for example, d0(id ◦τn) = τnδ0 = δn which is not the same as first projecting to id and
then applying d0, which yields δ0.

Second, while the simplicial projections of the simplicial cartesian product induce a homeomor-
phism in the realization (cf. section 3), the simplicial set Λn cannot be obtained as a simplicial
cartesian product, as it doesn’t allow a cyclic structure: see figure 2. Thus we cannot pick an iso-
morphism of simplicial sets and take its realization. Some authors introduce a “twisted simplicial
product” which induces a homeomorphism in the realization, see [DHK85]. y

Theorem 5.9. Let X• be a cyclic space. Then |X•| admits a canonical SO(2)-action.
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Figure 2: Two different triangulations of R/Z×|∆2| (the dashed simplices are identified). The left
one is Λ2, and the right one represents ∆1×∆2 modulo the relation [0, 1, 2] ≡ [0′, 1′, 2′].
As different triangulations their realization is homeomorphic, but the left one admits
a cyclic structure while the simplicial set one the right does not allow for a cyclic
structure that permutes the shaded simplices. On the left we have, in accordance with
(2op), d1t2[0′, 1′, 2′] = d1[2, 0′, 1′] = [2, 1′] = t1[1′, 2′] = t1d0[0′, 1′, 2′]. On the right this
fails, since d1t2[0′, 1′, 2′] = d1[0, 1′, 2′] = [0, 2′], but t1d0[0′, 1′, 2′] = t1[1′, 2′] = [1, 2′].

Proof. We have shown this in lemma 5.7 for the standard cocyclic space |Λ•|. Analogously to
proposition 2.7, a cyclic space is “built up” from the prototypical standard cyclic sets, i. e. X•

∼=
X• ×Λ Λ• =

∫ n
Xn × Λn. Coends commute and the product preserves colimits, so we obtain:

|X•| =
∫ m:∆

Xm × |∆m| ∼=
∫ m:∆ ∫ n:Λ

Xn × Λn[m]× |∆m|

∼=
∫ n:Λ

Xn ×
∫ m:∆

Λn[m]× |∆m| ∼=
∫ n:Λ

Xn × |Λn|

∼=
∫ n:Λ

Xn × SO(2)× |∆n|.

Put differently, the realization is obtained as the quotient

|X•| =
∞∐
n=0

Xn × SO(2)× |∆n|

/
≈

where ≈ is the usual relation ∼ plus (tnx, p) ≈ (x, Tnp), with Tn from the previous lemma. In
terms of proposition 2.6, we look at the coequalizer with the sum indexed by f ∈ Mor Λ, not
only morphisms in ∆. Since Tn is SO(2)-equivariant, the action descends on the quotient.

6 Edgewise Subdivision

The homotopy theory of G-spaces with G-equivariant maps is defined via ordinary homotopy
theory on the fixed sets under H ⊆ G for all (closed) subgroups H (see e. g. [Wan80]). In
particular, a map f : X → Y is a G-weak equivalence if and only if it induces isomorphisms
πn(XH) ∼= πn(Y H) for all subgroups H. Thus in the case G = SO(2) we are interested in the
realization’s fixed points under actions induced by subgroups of SO(2), and there are two cases:
SO(2) itself, and the (discrete) subgroups isomorphic to Z/nZ.

Proposition 6.1. Let X• be a cyclic space. The fixed points of its realization under the canonical
SO(2)-action are |X•|SO(2) = {x ∈ X0 | s0x = t1s0x}.

Proof. The SO(2)-action on the SO(2)× |∆n| factors/summands of |X•| is nontrivial; hence the
only way the action can become trivial in the quotient is if the SO(2) part is being collapsed to a

25



point. Since Tn is the only non-identity relation on SO(2), and all degenerate |∆n| that collapse
to a point in the quotient are identified with a 0-cell x ∈ X0, it is enough to consider T1 which
sends (z;x0, x1) 7→ (z − x0;x1, x0).

Let [x; z; 1] be a point in
∐
Xn × SO(2)× |∆n|/≈. For all a ∈ SO(2), we must have [x; z; 1] =

[x; z − a; 1]. We can rewrite

[x; z; 1] = [x;S0(z; a, 1− a)] and
[x; za; 1] = [x;S0(z − a; 1− a, a)] = [x;S0(T1(z; a, 1− a))].

Using the relation ≈, we “switch around” the degeneracies and obtain

[s0x; z; a, 1− a] = [t1s0x; z; a, 1− a].

We see that for degenerate 1-cells y = s0x with t1y = y the factor SO(2) and |∆1| collapse to a
point; Thus it makes sense to consider {y ∈ s0(X0) | t1y = y} ⊂ |X•|, and these are exactly the
SO(2)-invariant points.

Example 6.2. We saw in example 5.3 that |C•| ∼= SO(2) with SO(2) acting from the left. Thus
we should expect no fixed points under this action, and the proof of proposition 5.4 showed that
C0 = {t0}, s0(t0) = id, and id 6= t1 ∈ C1, so indeed |C•|SO(2) = ∅ as expected. y

In order to find the fixed sets of actions of the discrete subgroups Z/nZ, we need an elaborate
subdivision.

Definition 6.3. For a ≥ 1, define the a-subdivision functor sda : ∆→ ∆ via

[n] 7→
a∐
i=1

[n] = [a(n+ 1)− 1], (f : [m]→ [n]) 7→ (

a∐
i=1

f :

a∐
i=1

[m]→
a∐
i=1

[n]),

or equivalently sda(f) : [a(m+1)−1]→ [a(n+1)−1] by mapping f : i(m+1)+r 7→ i(n+1)+f(r)
for 1 ≤ i ≤ a−1 and 0 ≤ r ≤ m. Given a simplicial space X•, we define sdaX• as the composition
X• ◦ sda. This procedure is called edgewise subdivision. y

Remark 6.4. It is clear from the definition that the r-simplices of the a-subdivided X• are
exactly the (a(r + 1) − 1)-simplices of X•, in formulas (sdaX•)r = Xa(r+1)−1. The face and
degeneracy maps are as follows:

sdaX(di) = di ◦ d(n+1)+i ◦ d2(n+1)+i ◦ · · · ◦ d(a−1)(n+1)+i : (sdaX•)n → (sdaX•)n−1

sdaX(si) = s(a−1)(n+1)+i ◦ · · · ◦ s2(n+1)+i ◦ s(n+1)+i ◦ si : (sdaX•)n → (sdaX•)n+1

y

Example 6.5. We can explicitly compute and draw 2- or 3-subdivisions of low-dimensional and
easy-to-understand simplicial sets. Figure 3 shows two nontrivial subdivisions of ∆2. For the 2-
subdivision, vertices, edges and faces are order-preserving maps [1]→ [2], [3]→ [2], and [5]→ [2],
respectively. Only non-degenerate simplices are drawn; for example, the 1-simplex [0, 0, 2, 2] =
s0[0, 2] is degenerate (and hence doesn’t appear), whereas [0, 0, 0, 2] can not be obtained from
any vertex via the only 0-degeneracy s0; it sits between the vertices d1[0, 0, 0, 2] = [0, 0] and
d0[0, 0, 0, 2] = [0, 2].

We can still draw reasonable pictures in one dimension higher: The 2-subdivision of ∆3 has
vertices (sd2 ∆3)0 = ∆3[1], edges (sd2 ∆3)1 = ∆3[3], faces (sd2 ∆3)2 = ∆3[5] and 3-simplices
(sd2 ∆3)3 = ∆3[7]; all higher-dimensional simplices are degenerate. Figure 4 features a drawing
of (the non-degenerate simplices of) sd2(∆3); it is suggestively drawn so that it should be obvious
that | sd2(∆3)| ∼= |∆3|. This is in fact true for any a-subdivision of any ∆k, as will be shown in
the next lemma. y
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[0,0] [0,1] [1,1]

[0,2] [1,2]

[2,2]

[0,0,0,1] [0,1,1,1]

[0,0,2,2]

[0,2,2,2] [1,2,2,2]

[0,0,0,2]

[0,0,1,2] [0
,1
,1
,2
]

[1,1,1,2]

[0,1,2,2,2,2]

[0,0,0,0,1,2] [0,1,1,1,1,2]

[0,0,1,1,2,2]

[0,0,0] [0,0,1] [0,1,1] [1,1,1]

[0,0,2] [0,1,2] [1,1,2]

[0,2,2] [1,2,2]

[2,2,2]

Figure 3: The subdivisions sd2 ∆2 and sd3 ∆2 in comparison. For simplicity, in the latter case
only the vertices are prescribed: A 2-simplex is an order-preserving map [8]→ [2]; e. g.
the top triangle is the map with image [0, 1, 2, 2, 2, 2, 2, 2, 2].

Lemma 6.6. Let X• be a simplicial space and a ≥ 1. Then there exists a homeomorphism
Da : | sdaX•|

∼=−→ |X•|.

Note. If the context is clear, this homeomorphism will simply be denoted D. In cases where this
notation is ambiguous, the notation Da makes clear which subdivision is being “undone”.

Proof. This proof is explicitly works out the steps indicated in the four-line “proof” of [BHM93,
Lemma 1.1].

We will let D be the homomorphism induced by id×da : Xa(n+1)−1 × |∆n| → Xa(n+1)−1 ×
|∆a(n+1)−1| with da(p) = 1

a (p, . . . , p). For the coface and codegeneracies of the standard simplex
we have da ◦Di(p) = sda(Di) ◦ da(p) and da ◦ Si(p) = sda(Si) ◦ da(p), hence the map id×da is
well-defined and descends on the quotient.

Step 1: The claim holds true for X• = ∆1.

We can compute sda ∆1 explicitly: It has (a + 1) vertices, namely all order-preserving maps
Hom∆([a − 1], [1]); we can represent a 0-cell as an a-tuple [0, . . . , 0, 1, . . . , 1]. The 1-simplices of
sda ∆1 are all order-preserving maps Hom∆([2a − 1], [1]) and we can likewise represent them
as 2a-tuples. The degeneracy sends s0 : [0, . . . , 0, 1, . . . , 1] 7→ [0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1], hence a
1-simplex is degenerate iff it has an even amount of zeros. The realization collapses degenerate
simplices, so it is enough to consider the non-degenerate 1-cells. It is clear that all k-simplicies
for k ≥ 2 are degenerate. Thus we can picture the non-degenerate simplices in sda ∆1 as follows:

[0, . . . , 0, 1] [0, . . . , 0, 1, 1, 1] · · · [0, 1, . . . , 1]

[0, . . . , 0] [0, . . . , 0, 1] [0, . . . , 0, 1, 1] · · · [0, 1, . . . , 1] [1, . . . , 1]

d1 d0 d1 d0 d1 d0

The realization |∆1| has only one non-degenerate simplex in dimension ≥ 1, namely id ∈
Hom∆([1], [1]). The 0-cell vi = [0(0), . . . , 0(i−1), 1(i), . . . , 1(a−1)], 1 ≤ i ≤ a − 1, can be obtained
as

vi = s0 ◦ s0 ◦ · · · ◦ s0︸ ︷︷ ︸
(i−1) times

◦ s1 ◦ s1 ◦ · · · ◦ s1︸ ︷︷ ︸
(a−i−1) times

◦ id,

hence we have

D([vi, 1]) = [si−1
0 sa−i−1

1 id, da(1)] = [id, Sa−i−1
1 Si−1

0 da(1)] = [id, (
i

a
,
a− i
a

)],
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[0,1]

[1,1]
[0,2]

[1,2]

[2,2]

[0,3]

[2,3]

[1,3]

[3,3]

[0,0]

Figure 4: A drawing of sd2 ∆3. To distinguish the simplices better, three of the overlapping ones
are shaded in gray, red and blue; the two 3-simplices [0, 0, 0, 1, 1, 2, 3, 3] (with corners
[0, 1], [0, 2], [0, 3], [1, 3]) and [0, 1, 1, 2, 2, 2, 3, 3] (with corners [0, 2], [1, 2], [1, 3], [2,
3]) are not shaded.

and regarding |∆1| ∼= [0; 1] ⊆ R we can write D(vi) = i
a . Thus we see that D “shrinks” the a

one-simplices that are glued end-to-end in sda ∆1 to intervals of length 1
a in |∆1| = [0; 1].

Step 2: The claim holds true for X• = ∆k, k ≥ 2.

We define maps i : ∆k ↪→ (∆1)×k and r : (∆1)×k � ∆k such that r ◦ i = id, i. e. r is a retract
(one can think of this as decomposing a map into layers and then summing them up again):

i(id[k]) = (l1, . . . , lk), lj(m) =

{
0 if 0 ≤ m < k − j
1 if k − j ≤ m ≤ k

rm(f1, . . . , fk) =

k∑
j=1

fj , fi : [m]→ [1]

The map i = ik is defined on the generator of ∆k, and extends to a simplicial map by letting
im(f : [m] → [k]) = (l1 ◦ f, . . . , lk ◦ f). As an example, a (degenerate) 4-simplex in ∆3[4] is
mapped as follows:

[0, 1, 1, 2, 3] ([0, 1, 1, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1]) [0, 1, 1, 2, 3].
i4 r4

The map r is simplicial, because we have

di(rm(f1, . . . , fk)) =
∑

fj ◦ δi =
∑

difj = rm−1(di(f1, . . . , fk))

and similarly for the degeneracies si. In order to show that r is a retract, it is enough to show that
r ◦ i is the identity on the generator id[k] ∈ ∆k, but this is obvious since r(i(id[k]))(j) = j · 1 = j.

By functoriality we have retracts | id | = |r| ◦ |i| and | sda(id)| = | sda(r)| ◦ | sda(i)|. Realization
preserves products (see theorem 3.4), so we have the canonical homeomorphism |(∆1)×k| ∼=
|∆1|×k.
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Consider the following diagram:

| sda((∆1)×k)|

| sda ∆k| | sda(∆1)×k| | sda ∆k|

| sda(∆1)|×k

|∆k| |∆1|×k |∆k|

|(∆1)×k|

| sda(r)|∼=
| sda(i)|

D

∼=

D

∼=D×k

|i|
∼=

|r|

The left (and analogously, the right) quadrilaterals are commutative: Going down and right, we
obtain for f : [m]→ [k] ∈ ∆k[m]:

[
∐
a f, p] [

∐
a f, dap] [

∏k
i=1

∐
a fli, dap],

D |i|

and going the other way we map

[
∐
a f, p] [

∏k
i=1

∐
a fli, p] [

∐
a

∏k
i=1 fli, p] = [

∏k
i=1

∐
a fli, p]

| sda(i)|

∏k
i=1 [

∐
a fli, p]

∏k
i=1 [

∐
a fli, dap] [

∏k
i=1

∐
a fli, dap].

D×k

The left quadrilateral shows that D is injective; the right one shows D is surjective. Thus D is
a continuous bijection, and because |∆k| (and the relevant derived constructions like | sda ∆k|)
are compact CGWH-spaces, this implies D is a homeomorphism.

Step 3: The homeomorphism D is natural in X•, and we have

sda(X•) = sda

(∫ n

Xn ×∆n

)
∼=
∫ n

Xn × sda ∆n.

Hence we obtain for an arbitrary simplicial space X•:

| sdaX•| =
∫ n

(sdaX•)n × |∆n| ∼=
∫ n ∫ m

Xm × sda(∆m)× |∆n| ∼=
∫ m

Xm × |∆m| = |X•|

We will now go over to cyclic spaces, extend the sda functor and show thatD is SO(2)-equivariant.
First, we need an auxiliary category:

Definition 6.7. The category Λr, r ≥ 1, is the category ∆ with an additional generating arrow
τn = τr,n for all n ∈ N subject to the relations described in (2), except that the third line is
replaced by τ r(n+1)

r,n = id. y

Remark 6.8. In particular, in the case r = 1 we have the original cyclic category Λ. Analogously
to proposition 1.10, we see that HomΛr

([m], [n]) ∼= Hom∆([m], [n])× Cop
r(m+1), and in particular

AutΛr ([n]) ∼= Cop
r(n+1)

∼= AutΛ([r(n+ 1)− 1]).
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We can extend the edgewise subdivision functor sda : ∆ → ∆ to a functor sda : Λra → Λr,
by letting it be the identity on AutΛra([n]) ∼= Cop

ra(n+1) → Cop
ra(n+1)

∼= AutΛr ([a(n + 1) − 1]) =

AutΛr
(sda[n]). Writing jr for the inclusion functor ∆→ Λr, this can be pictured as:

∆ ∆

Λar Λr

sda

jar jr

sda

Again we have the standard n-dimensional r-cyclic sets Λnr . y

Example 6.9. We will compute the standard 2-cyclic set Λ1
2[−], see figure 5 for an illustration5.

Since Λ1
2[−] has a single generator id : [1] → [1], we can express its elements (uniquely) by

applying face, degeneracy and torsion maps, which translate to precomposing with coface maps δi,
codegeneracy maps σi and cotorsion maps τ2,n. We list the (not necessarily nondegenerate) cells in
low dimensions by explicitly computing for m = 0, 1, 2 the expression Λ1

2[m] = ∆1[m]×Cop
2(m+1):

Λ1
2[0] = {δ0, δ1} × {id, τ2,0}

Λ1
2[1] = {δ0σ0, id[1], δ1σ0} × {id, τ2,1, τ2

2,1, τ
3
2,1}

Λ1
2[2] = {δ0σ0σ0, σ0, σ1, δ1σ0σ0} × {id, τ2,2, . . . , τ5

2,2}

There are four degenerate 1-simplices by evaluating s0(Λ1
2[0]): δ0σ0 and δ1σ0, and s0(δ0τ2,0) =

δ0τ2,0σ0 = δ0σ0τ
2
2,1 and analogously δ1σ0τ

2
2,1. The remaining eight non-degenerate 1-simplices

appear as arrows in the diagram below; their position is determined by computing their endpoints
via d0 and d1.

For the non-degenerate 2-simplices, we have to compute si(Λ1
2[1]) for i = 0, 1 and remove these

simplices from Λ1
2[2]. Noting that s0(· · · τ j2,1) = · · · τ j−1

2,1 σ1τ
2
2,2 and s1(· · · τ j2,1) = · · · τ j−1

2,1 σ0τ2,2,
plus the relation σ0σ1 = σ0σ0 establishes that all δiσ0σ0τ

k
2,2, i = 0, 1, k = 0, 1, 2, 3, 4, 5 are

degenerate. Applying s0 to id[1] τ
j
2,1 shows that the simplices σ0, σ1τ

2
2,2, σ0τ

3
2,2 and σ1τ

5
2,2 are

degenerate; likewise for s1, the simplices σ1, σ0τ2,2, σ1τ
3
2,2 and σ0τ

4
2,2 are degenerate. This leaves

four non-degenerate 2-simplices: σ1τ2,2, σ0τ
2
2,2, σ1τ

4
2,2 and σ0τ

5
2,2. y

δ1τ
2
2,0 δ0τ

2
2,0

δ1τ2,0 δ0τ2,0

δ1 δ0

τ4
2,1= id

δ1σ0τ
3
2,1 τ

3
2,
1 δ0σ0τ

3
2,1

τ2
2,1

τ2,
1δ1σ0τ2,1

τ0
2,1= id

δ0σ0τ2,1

Figure 5: An explicit depiction of the standard 2-cyclic set Λ1
2. Note that top and bottom vertices

and 1-simplices are identified. The 1-simplices are drawn as arrows x, pointing from
d0(x) to d1(x). The realizations of this cyclic set is R/2Z× |∆1|.

Proposition 6.10. The following three properties establish important key facts about the stan-
dard r-cyclic sets.

1. The r-cyclic set Λ0
r[−] has r vertices, and r nondegenerate 1-simplices. All higher-dimensional

simplices are degenerate. Its realization is |Λ0
r| ∼= R/rZ.

5An equivalent depiction of Λ1
2[−] also appears in [DGM12, p. 236].
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2. The standard n-dimensional r-cyclic set Λnr [−] has realization |Λnr | ∼= R/rZ× |∆n|.

3. There exists a simplicial Cr-action on Λnr [−], and the induced action of the discrete subgroup
Z/rZ ⊂ R/rZ on the realization is simplicial.

Proof. We have Λ0
r[0] = ∆0[0] × Cr, and thus r vertices τ0

r,0, . . . , τ
r−1
r,0 . Applying s0 to these

vertices, we obtain τ0
r,1, τ

2
r,1, . . . , τ

2(r−1)
r,1 , thus we have r non-degenerate 1-simplices τ ir,1 for odd

i, 1 ≤ i ≤ 2(r − 1) + 1. A 1-simplex g = τ2k+1
r,1 is attached to d0(g) = gδ0 = τkr,0 and d1(g) =

gδ1 = τk+1
r,0 . We have d1(τ

2(r−1)+1
r,1 ) = τ rr,0 = τ0

r,0, thus in the realization we have r copies of
|∆1| ∼= [0; 1] ⊂ R glued end-to-end along the r vertices to form a circle; see figure 6 (a) for the
case |Λ0

5|. A point [τkr,1, (t, 1 − t)] corresponds to k + t ∈ [k; k + 1] ⊂ R/rZ, k = 0, 1, . . . , r − 1,
0 ≤ t ≤ 1.

The proof of lemma 5.7 can be used almost word for word to prove |Λnr | ∼= R/rZ × |∆n|. Note
that the cocyclic structure maps Tr,n rotate the corners of the n-simplices, so we have T 0

r,n =

Tn+1
r,n = · · · = T

r(n+1)
r,n = id. See figure 6 (b) for an illustration of the realization of the standard

2-dimensional 3-cyclic set Λ2
3.

τ0

τ1

τ2 τ3

τ4

(a) The realization of |Λ0
5|. The

five [0; 1] segments are
τ15,1, τ

3
5,1, . . . , τ

9
5,1. They are

glued in to form R/5Z, which
can be identified SO(2) in the
usual fashion.

(b) As before, the top and bottom dashed tri-
angles are identified. Note in particular how
the Z/3Z-action is simplicial in the real-
ization, i. e. sending simplices to simplices.
This is not the case in |Λ2|, cf. figure 2.

Figure 6: An illustration of |Λ0
5| and |Λ2

3|.

We have, by employing the cocyclic relations (2),

τm+1
r,m δi = τmr,mδi−1τr,m−1 = · · · = τm−i+1

r,m δ0τ
i
r,m−1

= τm−ir,m δmτ
i
r,m−1 = δiτ

m
r,m−1, and similarly

τm+1
r,m σi = σiτ

m+2
r,m+1.

Since Cr ∼= 〈tm+1
r,m 〉 for all m (recall that tr(m+1)

r,m = id), the canonical Cr action is simplicial. The
induces the canonical action of Z/rZ on R/rZ× |∆n|, which as a result is simplicial as well.

Corollary 6.11. A point (θ; p0, . . . , pn) ∈ R/rZ × |∆n| has a “quotient representation” [σi ◦
g(θ); q0, . . . , qn+1] with g(θ) = τ

k(n+2)+n+2−i
r,n+1 .

Proof. We choose nonnegative p′, p′′ with p′ + p′′ = pi and k ∈ [r − 1] such that θ = −k − p0 −
· · · − pi−1 − p′ in R/rZ, and define (q0, . . . , qn+1) := (p′′, pi+1, . . . , pn, p0, . . . , pi−1, p

′). Then we
calculate directly using the homeomorphism [xg, p] 7→ ([g, p], [x, g(p)]) from lemma 5.7:

[σi ◦ τk(n+2)+n+2−i
r,n+1 ; q0, . . . , qn+1] =

= ([τ
k(n+2)+n+2−i
r,n+1 , q0, . . . , qn+1], [σi, p0, . . . , pi−1, p

′, p′′, pi+1, . . . , pn])

31



= (−k − p0 − · · · − pi−1 − p′; p0, . . . , pn) = (θ; p).

Proposition 6.12. For n ≥ 0, there is a simplicial map sda : Λnas → sda Λ
a(n+1)−1
s .

Proof. We map x : [m]→ [n] ∈ ∆n[m] and t ∈ Cop
as(m+1) as follows:

sda : Λnas = ∆n[−]× Cop
as(−+1) → sda Λa(n+1)−1

s = ∆a(n+1)−1[sda(−)]× Cop
as(−+1)

(x, t) 7→ (x t · · · t x, t),

where xt· · ·tx denotes the “diagonal inclusion by concatenation”, i. e. it is a map [a(m+1)−1]→
[a(n+1)−1], cf. definition 6.3. The map is by construction simplicial, because for f : [m′]→ [m]
we have:

x : [m]→ [n] x t · · · t x

f(x) = xf : [m′]→ [n] xf t · · · t xf f t · · · t f(x t · · · t x)

sda

f ft···tf

sda

Proposition 6.13. The map | sda−| can be described by the following diagram:

|Λnas| | sda Λ
a(n+1)−1
s | |Λa(n+1)−1

s |

R/asZ× |∆n| R/sZ× |∆a(n+1)−1|

| sda−| Da

∼=

1
a×da

Proof. The diagram is indeed commutative. To see this we need to use the quotient repre-
sentation from corollary 6.11 for a point when mapping the top way. Given a point (θ, p) =

[x ◦ g(θ), q0, . . . , qn+1], with x = σi and g(θ) = τ
(ka+k′)(n+2)+n+2−i
as,n+1 , we map:

[xg(θ); q] [(x t · · · t x)g(θ), q] [(x t · · · t x)g(θ), ( 1
aq, . . . ,

1
aq)]

([g(θ); ( 1
aq, . . . ,

1
aq)],

[x t · · · t x; τn+2−i
s,n+1 ( 1

aq, . . . ,
1
aq)])

(θ; p) ( θa ; 1
ap, . . . ,

1
ap)

1
a×da

Note in particular that we have θ = −(ka+ k′)− p0 − · · · − pi−1 − p′ and thus

[g(θ), (
1

a
q, . . . ,

1

a
q)] = [τ

(ka+k′)(n+2)+n+2−i
as,n+1 , (

1

a
q, . . . ,

1

a
q)]

= −k − k′ 1
a

(q0 + · · ·+ qn)− 1

a
(p0 + · · ·+ pi−1 + p′)

=
−ka− k′ − p0 − · · · − pi−1 − p′

a
=
θ

a

for the right-hand equality.

Theorem 6.14. Let X• be an s-cyclic space. Then D : | sdaX•| → |X•| is an SO(2)-equivariant
homeomorphism.
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Proof. The previous proposition lets us identify what D does on the components that are iden-
tified with SO(2):

| sdaX•| |X•|

∐
Xa(n+1)−1 × |Λnas|

/
≈

∐
Xn × |Λns |

/
≈

∐
Xa(n+1)−1 × R/asZ× |∆n|

/
≈

∐
Xn × R/sZ× |∆n|

/
≈

D
∼=

id×D| sda−|

id× 1
a×da

The identification of R/asZ and R/sZ with SO(2) differ by division with a, and that is exactly
what D does on this component. Thus we obtain a diagram

R/asZ× | sdaX•| R/asZ× |X•| R/sZ× |X•|

| sdaX•| |X•|

action

id×D 1
a×id

action

D

showing the equivariance of the homeomorphism.

The third assertion in proposition 6.10 together with this equivariance theorem imply the follow-
ing important result: Given the realization of a cyclic space X•, we can analyze its fixed points
under a finite subgroup C of SO(2) by looking at the corresponding simplicial action in a suitable
subdivision. Formally:

Corollary 6.15. Let Ca ⊂ SO(2) be a finite cyclic subgroup of order a. Then |X•|Ca ∼= |(sdaX•)Ca |.

Proof. By theorem 6.14, Da is equivariant with respect to the SO(2)-, and thus Ca-action, and
the fixed point space can be described as an equalizer (cf. section 3). Thus we have: |(sdaX•)Ca | ∼=

| sdaX•|Ca
D∼= |X•|Ca .

Proposition 6.16. The subdivision functor can be iterated with sda sdb = sdab, and the diagram

| sdabX•| |X•|

| sdbX•|

Da

Dab

Db

commutes, i. e. DbDa = Dab.

Proof. Commutativity of the diagram follows from proposition 6.13 and observing that dbda =
dab.

Definition 6.17. For a ≥ 1, the functor Pa : Λas → Λs is the identity on objects and morphisms
inherited from ∆, and projects τ i(n+1)+r

n 7→ τ rn. y

Remark 6.18. Since Pa is the identity on objects, unlike with the sda functor, the n-simplices of
X• and PaX• are equal. What changes is that for an s-cyclic space X•, PaX• carries a Cas-action.
If the context is understood one can drop the Pa and say X• carries both a Cs- and Cas-action.
How these compare to one another in the realization will be stated in the following proposition.

y
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Proposition 6.19. Let X• be a Λs-space, and p : R/asZ → R/sZ induced from the identity
map on R. Then |X•| carries an induced R/sZ and R/asZ action, and the following diagram
commutes:

R/asZ× |X•| R/sZ× |X•|

|X•|

action

p×id

action

Proof. In the realization, the map Pa : Λnas → Λns induces |Pa| = p × id : R/asZ × |∆n| →
R/sZ× |∆n|. For a general cyclic space one argues like the proof of theorem 6.14.

7 The Cyclic Nerve of a Group

An interesting object of study are classifying spaces of groups. Underlying this concept is the
more general concept of the (simplicial) nerve of a category and its realization. The related
concept of the cyclic nerve, which for topological groups is a cyclic space, is our main focus: Its
realization inherits a canonical circle action, and can be used to model (up to homotopy) the
free loop space of a group’s classifying space.

Definition 7.1. Let C be a (locally small) category. Define i : ∆→ Cat by sending [n] 7→ {0→
1 → · · · → n}, which shall denote the category corresponding to the totally ordered set [n];
morphisms are functors that respect the ordering. The (simplicial) nerve of C is defined as the
functor category N•(C) = HomCat(i−,C). Concretely, for n ∈ N, Nn(C) = {fn ◦fn−1 ◦· · ·◦f1|fi ∈
Mor(C) composable}.

Similarly, the inclusion icy : Λ → Cat sending [n] 7→ {0 → 1 → · · · → n → 0} gives rise
to the cyclic nerve N cy

• (C) = HomCat(icy−,C). Concretely, the cyclic nerve has the additional
restriction that the n+ 1 composable morphisms in N cy

n (C) must also allow a cyclic permutation
of the order, i. e. f1 ◦ fn+1 must be well-defined. y

Proposition 7.2. A nerve N•(C) : ∆op → Set is a simplicial set.

Proof. We describe the face and degeneracy maps explicitly:

di(fn ◦ · · · ◦ f1) =


fn ◦ · · · ◦ f2 i = 0

fn ◦ · · · ◦ (fi+1 ◦ fi) ◦ · · · ◦ f1 0 < i < n

fn−1 ◦ · · · ◦ f1 i = n

si(fn ◦ · · · ◦ f1) = fn ◦ · · · ◦ fi+1 ◦ id ◦fi ◦ · · · ◦ f1 0 ≤ i ≤ n

The maps di : Nn(C)→ Nn−1(C) and si : Nn(C)→ Nn+1(C) are well-defined by the composition
laws for categories. It is easy to check that the relations (1op) are safisfied, e. g. for 0 ≤ i < j ≤ n
one has:

disj(fn · · · f1) = di(fn · · · fj+1 id fj · · · f1) = fn · · · fj+1 id fj · · · (fi+1fi) · · · f1

= sj−1(fn · · · fj+1fj · · · (fi+1fi) · · · f1) = sj−1di(fn · · · f1).

Remark 7.3. One can actually see simplex-like shapes in the diagrams that constitute N•(C) in
low dimensions: The vertices N0(C) are empty composition of arrows, hence amount to choosing
objects ci ∈ Ob(C); the 1-cells are morphisms in C; the two-cells are commutative tringles; and
the three-cells are pyramid-shaped commutative diagrams:
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c0 c0 c1
f1

c0 c2

c1

f1

f2◦f1

f2

c3

c0 c2

c1

f3◦f2◦f1

f1

f2◦f1

f3

f2

f3◦f2

One can easily see how the face and degeneracy operations work in these diagrams just like they
do on the standard n-simplex. y

Nerves and realization have a deeper link than one would expect at first. Namely, they are both
adjoints to functors to/from simplicial sets, as will be made precise in the corollaries of the
following

Proposition 7.4. Let C be a (locally small, cocomplete) category. Then a cosimplicial object
Σ : ∆→ C determines a unique adjoint functor pair (L,R) with C(LX, Y ) ∼= S(X,RY ).

Proof. Let Σ be an cosimplicial object in C. Then, for a simplicial set X•, we define L : S → C
as the coend

LX :=

∫ m

Xm × Σm,

and f• : X• → X ′• translates to Lf• : LX• → LX ′• . By the universal property of the coend and
because Σ is a functor, L is a functor.

Define RY := C(Σ−, Y ); more concretely, given Y ∈ Ob(C), set RYn = C(Σn, Y ). Maps f : Y →
Y ′ translate to postcomposition. This makes RY a functor ∆op → Set, a simplicial set; the face
and degeneracy maps are determined by precomposing with their image under Σ.

By the Yoneda lemma S(∆n, RY ) ∼= RYn = C(Σn, Y ), and analogously to the proof of theorem 2.8
it follows C(LX, Y ) ∼= S(X,RY ).

Corollary 7.5. The cosimplicial object |∆•| : ∆→ Top determines the functor pair “realization
and singular set”, in symbols: |−| a Sing. (See also example 1.5, proposition 2.6 and theorem 2.8.)

Corollary 7.6. The cosimplicial object i : ∆ → Cat from definition 7.1 determines as right-
adjoint the nerve functor; that is, Cat(iX•,C) ∼= S(X•, N•C).

Definition 7.7. Let C be a (locally small, cocomplete) category. Then the realization of C is

defined via the composition Cat S TopN |−|
. Usually, |N(C)| is called the classifying

space of C and denoted BC. y

We now turn to the cyclic nerve and its relation to the simplicial nerve. Certainly every cyclic
nerve is a simplicial nerve by truncation:

π : N cy
n C→ NnC, fn · · · f0 7→ fn · · · f1.

If C is a groupoid, i. e. a category where all morphisms are automorphisms, then the simplicial
nerve admits an embedding into the cyclic nerve:

Proposition 7.8. Let C be a groupoid. Then there exists an embedding i : N•C → N cy
• C.

Furthermore, π ◦ i = id.

Proof. Let fn ◦ · · · ◦ f1 be an n-simplex in NnC. Since all morphisms are invertible, we can set
f0 := f−1

1 ◦ · · · ◦ f−1
n = (fn ◦ · · · ◦ f1)−1, and then fn ◦ · · · ◦ f1 ◦ f0 is an element of N cy

n C, since
by construction cod(f0) = dom(fn).
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We recall the standard categorical construction of a group (or, more generally, a monoid) as the
hom-set of a single-object category:

Definition 7.9. Given a monoid M , then the category with a single element ∗ and morphism
set M is denoted by M. Multiplication of elements in M correspond to composition in M; in case
M is a group, all morphisms are automorphisms. y

Remark 7.10. Given a group G, the nerve of the groupoid G is N•G ∼= G×•, where G0 is the
sole object of G. Note that the restriction of “composability of arrows” is no restriction in the
categorical construction of a group (or monoid), since all morphisms are composable. Thus we
refer to elements of NnG by an n-tuple (g1, . . . , gn); in particular note that the order is reversed,
as we regard this as tuples of elements that act by multiplication on the right.

Similarly, the cyclic nerve of G is N cy
n G ∼= Gn+1. In light of this notation, the inclusion map from

proposition 7.8 reads as follows:

i : NnG→ N cy
n G, (g1, . . . , gn) 7→ ((g1 · · · gn)−1, g1, . . . , gn).

The cyclic nerve N cy
• G inherits a canonical cyclic structure, given by

tn : (g0, . . . , gn) 7→ (gn, g0, . . . , gn−1).
y

The nerve construction via Hom-sets again has the limitation that it cannot take into account
additional structure like a topology (compare remark 2.9). We therefore define the nerve functor
for topological groups in such a way that for discrete groups it agrees with the nerve of the
one-element groupoid construction.

Definition 7.11. Let G be a topological group. Define the nerve functor N• : TopGrp →
SimpSpace via Nn(G) = Gn with the product topology and the obvious structure maps (cf.
prop. 7.2). The cyclic nerve N cy

• : TopGrp → CycSpace is given via N cy
n (G) = Gn+1, and struc-

ture maps as in the next proposition. y

Proposition 7.12. Given a topological monoid G, N cy
• G is a cyclic space.

Proof. This result holds by construction, but for clarity we write down explicitly the structure
maps: We have N cy

n G = Gn+1 with the product topology induced by the topology carried by G,
and

di(g0, . . . , gn) =


(g0g1, g2, . . . , gn) i = 0

(g0, . . . , gigi+1, . . . , gn) 0 < i < n

(gng0, g1, . . . , gn−1) i = n

si(g0, . . . , gn) = (g0, . . . , gi, eG, gi+1, . . . , gn)

tn(g0, . . . , gn) = (gn, g0, . . . , gn−1)

Since multiplication is continuous in G, all structure maps are continuous.

It might be interesting to see that not only the cyclic nerve admits a cyclic structure:

Proposition 7.13. Let G be a topological group. Then N•(G) admits a cyclic space structure.

Proof. Since NnG = Gn, a pure “rotation of coordinates” as in the cyclic nerve case is not
possible. The face and degeneracy maps are as in proposition 7.2, and tn is given by

tn : Gn → Gn, (g1, . . . , gn) 7→ (z(g1 · · · gn)−1, g1, . . . , gn−1),
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where z is any element in the center of G (e. g. the unit element 1). The map is continuous, and
the cyclic relations (2op) hold, in particular:

tn+1
n (g1, . . . , gn) = tnn(zg−1

n · · · g−1
1 , g1, . . . , gn−1)

= tn−1
n (zg−1

n−1 · · · g
−1
1 g1 · · · gnz−1, zg−1

n · · · g−1
1 , g1, . . . , gn−2)

= tn−1
n (gn, zg

−1
n · · · g−1

1 , g1, . . . , gn−2)

= tn−2
n (zg−1

n−2 · · · g
−1
1 g1 · · · gnz−1g−1

n , gn, zg
−1
n · · · g−1

1 , g1, . . . , gn−3)

= tn−2
n (gn−1, gn, zg

−1
n · · · g−1

1 , g1, . . . , gn−3)

. . .

= tn(g2, . . . , gn, zg
−1
n · · · g−1

1 )

= (zg1 · · · gnz−1g−1
n · · · g−1

2 , g2, . . . , gn)

= (g1, g2, . . . , gn).

It is essential that z commute with other group elements for tn+1
n = id to hold; the other cyclic

relations are straightforward to check. Thus we endow N•(G) with a cyclic space structure; Loday
calls this construction the twisted nerve of G, see [Lod98, 7.3.3].

For the rest of the section, let G be a topological group. We apply results from the previous
sections to follow [BHM93, section 2].

Definition 7.14. The diagonal map on the cyclic nerve of G is

∆a,• : N cy
• (G)→ sdaN

cy
• (G), (g0, . . . , gn) 7→ (g0, . . . , gn, . . . , g0, . . . , gn).

We denote by ∆a the realization |∆a,•|. y

Proposition 7.15. When restricting the codomain, the diagonal map is a simplicial isomorphism
∆a,• : N cy

• (G)→ (sdaN
cy
• (G))Ca

Proof. The Ca-action is generated by tn+1
a(n+1)−1, and the inverse map is truncation to the non-

repeating sequence.

Proposition 7.16. The map ∆a,• : PaN
cy
• (G)→ sdaN

cy
• (G) is a morphism of Λop

a -spaces.

Proof. Recall the definition of Pa from 6.17: PaN cy
• (G) is the space N cy

• (G) with a Ca(n+1)+1-
action on the n-simplices, generated by tn. We know ∆a,• is simplicial, so it remains to show it
is a-cyclic: Let ḡ = (g0, . . . , gn) ∈ N cy

• (G) and ḡ′ = (gn, g0, . . . , gn−1). Then:

tn∆a,n(ḡ) = tn(ḡ, . . . , ḡ) = (ḡ′, . . . , ḡ′) = ∆a,n(ḡ′) = ∆a,ntn(ḡ).

Proposition 7.17. There following diagram is commutative up to homotopy:

|N•(G)| |N cy
• (G)|

|N cy
• (G)| | sdaN cy

• (G)|Ca | sdaN cy
• (G)|

|i|

|i|

∆a

Da

Proof. We provide an explicit homotopy Ha,t : Da∆a|i| ' |i|. Let (g1, . . . , gn) ∈ N•(G). Then
the image [(g0, . . . , gn), p] ∈ |N cy

• (G)| has g0 = (g1 · · · gn)−1. Applying ∆aDa, we obtain

[(g0, . . . , gn, . . . , g0, . . . , gn), (
1

p
, . . . ,

1

p
)].
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Let ha,t : |∆n| × [0, 1]→ |∆a(n+1)−1| be given by

(p0, . . . , pn; t) = (p; t) 7→
(
t

a
p, . . . ,

t

a
p,

(
t

a
p+ (1− t)p

))
.

Then it is clear that ha,1 is the map da from lemma 6.6. In the case t = 0 we have ha,0 =

D
(n+1)(a−1)
0 , the repeated application of the coface map in |∆•|. Certainly ha,t is continuous, and

id×ha,t induces a homotopy

Ha,t : | sdaN cy
• (G)| × [0, 1]→ |N cy

• (G)|

with Ha,1 = Da. The map Ha,0 is induced by id×D(n+1)(a−1)
0 , or equivalently by d(n+1)(a−1)

0 ×id.
Since g0 · · · gn = eG, we have

d
(n+1)(a−1)
0 (g0, . . . , gn, . . . , g0, . . . , gn) = ((g0 · · · gn)a−1g0, g1, . . . , gn)

= (g0, g1, . . . , gn),

or for short d(n+1)(a−1)
0 ∆a,• = id. Thus thus we conclude Ha,0∆a|i| = |i|.

Corollary 7.18. The following diagram is homotopy-commutative:

|N•(G)| |N cy
• (G)| | sdsN cy

• (G)|Cs

|N cy
• (G)| | sdasN cy

• (G)|Cas | sdasN cy
• (G)|Cs

|i|

|i| ∆s

∆as

Da

Proof. The homotopy is ∆sHas,t : ∆sDa∆a|i| ' ∆s|i|.

Corollary 7.19. The maps |π|, |π|Da∆a : |N cy
• (G)| → |N•(G)| are homotopic.

Proof. We have π = πd
(n+1)(a−1)
0 ∆a,•, so the desired homotopy is |π|Ha,t∆a.

Proposition 7.20. Let ∆̄a be the composition

∆̄a : |PaN cy
• (G)| = |N cy

• (G)| ∆a−→ | sdaN cy
• (G)|Ca

Da−→ |N cy
• (G)|Ca .

Then ∆̄a is a homeomorphism and equivariant in the sense that ∆̄a(az · x) = z · ∆̄a(x).

Proof. The map ∆a is a homeomorphism by prop. 7.15, and composition with Da yields a home-
omorphism again. By virtue of Pa we have a R/aZ-action on both |N cy

• (G)| resp. | sdaN cy
• (G)|,

and by prop. 7.16, ∆a is equivariant with respect to this action. Theorem 6.14 guarantees the
equivariance of Da in the sense that the R/aZ-action becomes a R/Z-action by “rescaling” (di-
vision by a). Thus we have for z ∈ R/Z and x ∈ |N cy

• (G)|:

∆̄a(az · x) = Da∆a(az · x) = Da(az ·∆a(x)) = z ·Da∆a(x) = z · ∆̄a(x).

Definition 7.21. Let G be a topological group.

i) The classifying space of G is BG := |N•(G)|.

ii) The total space of the universal principal bundle of G is the space EG obtained as the
realization of the simplicial space E•G = N•(G//G), the nerve of the G-action groupoid on
G. We have EnG := G×Gn with the usual simplicial structure maps.

iii) Given a G-space X, the Borel construction is the realization of the simplicial space X ×G
E•G ∼= N•(X//G).
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iv) The (unbased) free loop space of BG is LBG := Map(S1, BG) with the compact-open
topology.

y

Proposition 7.22. We collect a few well-known properties of these constructions:

1. EG is a contractible space with a free G-action via g(g0, . . . , gn) = (gg0, . . . , ggn), and
BG = EG/G.

2. |X ×G E•G| ∼= X ×G EG = (X × EG)/G

Proof. See example 1B.7 and p. 322f. in [Hat02].

Proposition 7.23. Let q : |N cy
• (G)| → LBG be the adjoint of the composite map

SO(2)× |N cy
• (G)| |N cy

• (G)| |N•G| = BG.action |π|

Then q is an SO(2)-equivariant map and a homotopy equivalence.

Proof. The map q into the free loop space of BG is defined via

q : |N cy
• (G)| → LBG, p 7→ (z 7→ |π|(zp)),

where the action of z on p is understood to be the canonical SO(2)-action of a cyclic space (see
theorem 5.9). The SO(2)-action on LBG is “rotation of the loops”:

z′ · q(p) = z′ · (z 7→ |π|(zp′)) = (z 7→ |π|(zz′p′)) = q(z′p),

thus q is an equivariant map. It is also a homotopy equivalence via the composition

|N cy
• (G)| Gad ×G EG LBG.

f

∼=
h
∼

The space Gad is G with G-action conjugation, i. e. HomGad(x, x′) = {g | g−1xg = x′}. The
homeomorphism f is induced by the map

f̃ : N cy
• (G) ∼= Gn+1 → Gad ×G E•G = N•(G

ad)

(g0, . . . , gn) 7→ g1 · · · gng0[g1| · · · |gn],

which is a simplicial isomorphism with inverse g[g1| · · · |gn] 7→ ((g1 · · · gn)−1g0, g1, . . . , gn). Indeed,
given ḡ = (g0, . . . , gn), one calculates

d0f̃(ḡ) = g−1
1 g1 · · · gng0g1[g2| · · · |gn] = f̃d0(ḡ) and

dnf̃(ḡ) = (g1 · · · gn−1)gng0[g1| · · · |gn−1] = f̃dn(ḡ),

and the other equalities (1op) are trivially satisfied.

The homotopy equivalence h is best understood by “looking backwards”: a loop λ : [0; 1] → BG
corresponds to a tuple (g, λ̃(0)), where λ̃ is a lift of λ along the fibration EG → BG, and g is
uniquely determined such that λ(0)g = λ(1). Lemma 2.12.1 of [Ben98] gives a proof that this is
indeed a well-defined homotopy equivalence; also see [Mad95, p. 202].

Corollary 7.24. Under q, the map |i| is the inclusion of trivial loops BG ↪→ LBG.

Proof. We have f̃ i(g1, . . . , gn) = e[g1| · · · |gn]. Thus an element z ∈ BG correspond to the map
λ̃ : [0; 1]→ EG with λ̃([0; 1]) = {z} ⊂ EG, and the projection λ ∈ LBG is the trivial loop.
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Theorem 7.25. For a (topological) group G and each finite subgroup C ⊂ SO(2),

qC : |N cy
• (G)|C → (LBG)C

is a homotopy equivalence.

Proof. Every finite subgroup C of SO(2) can be identified with a finite cyclic group. Let a ≥ 1
such that C ∼= Ca.

Proposition 7.23 already established that q is a homotopy equivalence. We will show here that
qCa is homotopic to q, which implies it is also a homotopy equivalence.

Let Ra : LBG→ LBG be given by sending a loop λ : z 7→ z ·x to Ra(λ) : z 7→ az ·x, i. e. running
with a-fold speed around a times. Restricting the codomain, we have an obvious homeomorphism
Ra : LBG→ (LBG)Ca .

We can factor q as the composition

q : |N cy
• (G)| g−→ L|N cy

• (G)| L|π|−→ LBG,

where g is the adjoint to the SO(2)-action, and L|π| is the “loop-ing” of the realized projection
map. Then there exists a commutative diagram with all vertical maps homeomorphisms:

|N cy
• (G)|Ca (L|N cy

• (G)|)Ca (LBG)Ca

|N cy
• (G)| (L|N cy

• (G)|) LBG

gCa L|π|

g

∆̄a

L|π|
Ra Ra

The left quadrilateral is commutative, because by prop. 7.20 given a loop (λ(x) : z 7→ z · x) ∈
L|N cy

• (G)|, we have λ(∆̄a(x))(z) = λ(x)(az) = Ra(λ(x))(z).

By corollary 7.19, the maps |π| and |π|∆̄a are homotopic, which induces homotopies via the
loop functor L. Therefore the right quadrilateral is homotopy-commutative, which finishes the
proof.

Note. The theorem’s statement is false for C = SO(2), because while q is an SO(2)-equivariant
homotopy equivalence, it is not in general an equivariant weak equivalence of SO(2)-spaces,
which would require πi(|N cy

• (G)|SO(2), x0) ∼= πi(LBG
SO(2), x0) for all i and base points x0. But

by proposition 6.1, on the one hand we have

|N cy
• (G)|SO(2) = {g ∈ N0(G) ∼= G | s0g = t1s0g} = {eG},

but on the other hand the SO(2)-equivariant loops in LBG are the trivial loops. Thus LBGSO(2) ∼=
BG, a space which (by design!) is in general not contractible.
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