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Introduction

In this project we will introduce the Petersen graph and highlight some of its interesting properties,
explain the construction of the cross cap and proceed to show how to embed the Petersen graph onto
the suface of the cross cap without any edge intersection – an embedding that is not possible to achieve
in the plane.

Since the self-intersection of the cross cap in R3 is very hard to grasp in a planar setting, we will
subsequently create an animation using the 3D modeling software Maya that visualizes the important
aspects of this construction. In particular, this visualization makes possible to develop an intuition of
the object at hand.

1 Theoretical Preliminaries

We will first explore the construction of the Petersen graph and the cross cap, highlighting interesting
properties. We will then proceed to motivate the embedding of the Petersen graph on the surface of the
cross cap.

1.1 The Petersen Graph

The Petersen graph is an important example from graph theory that has proven to be useful in particular
as a counterexample. It is most easily described as the special case of the Kneser graph:

Definition 1 (Kneser graph). The Kneser graph of n, k (denoted KGn,k) consists of the k-element
subsets of {1, . . . ,n} as vertices, where an edge connects two vertices if and only if the two sets corre-
sponding to the vertices are disjoint.

The graph KGn,k is
(
n−k
k

)
-regular, i. e. at each vertex,

(
n−k
k

)
edges meet. The special case we will

focus on is the Petersen graph P = KG5,2, so called after the Danish mathematician Julius Petersen
(1839–1910). It is 3-regular and has 10 vertices and 15 edges. See figures 1a and 1b.

The Petersen graph has the following interesting properties [3, 5]:
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(a) Traditional realization of the Petersen graph as
KG5,2 in the plane. The inner vertices and
their edges form a pentagram; the outer ver-
tices form a pentagon. This version exhibits
five edge intersections.

(b) The Petersen graph in the plane with just two
edge intersections. It can be shown that this
is the minimum number of intersections neces-
sary when drawing the graph in the plane.

Figure 1: Two drawings of the Petersen graph in the plane

(a) A vertex 3-coloring of the Petersen graph (b) An edge 4-coloring of the Petersen graph

Figure 2: The Petersen graph has chromatic number 3 and chromatic index 4
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• It has chromatic number n − 2k + 2 = 3, so an optimal vertex coloring needs at least three
different colors (see figure 2a)

• It has chromatic index 4, meaning a minimum edge coloring must use at least four different
colors (see 2b)

• It is the smallest snark1 – a connected, bridgeless2, 3-regular graph with chromatic index 4

• It has crossing number cr(P ) = 2, meaning it cannot be embedded into the Euclidean plane R2

with less than 2 edge intersections (cf. [7, p. 2], see figure 1b).

The Petersen graph can, however, be embedded without any edge intersections in the real projective
plane, a model of which is the cross cap. While there are intuitive visualizations in the Euclidean plane
for the graph-theoretical properties, the embedding on the cross cap should be done in a 3D setting.
This will be done in section 2.

1.2 The Real Projective Plane and the Cross Cap

Definition 2 (Real projective space). The real projective space RPn consists of the lines passing
through the origin of Rn+1. In the case n = 1, this is called the real projective line; in the case
n = 2, real projective plane.

An equivalent (and more intuitive) construction for RPn

can be given by identifying antipodal points of the n-
sphere Sn: Since any line passing through the origin meets
the sphere at exactly two antipodal points, one can iden-
tify a line by either of these points. Choosing w. l. o. g. the
points on the northern hemisphere, one finds that the real
projective plane is topologically equivalent to the disk D2

with antipodal points of the border ∂D2 = S1 identified.

Stretching the imagination a little bit, we can picture D2 as
the topologically equivalent unit square. The identification
of antipodal border points then happens as in figure 3.

Figure 3: The topological view:
How to glue [0,1] × [0,1]
together to construct the
real projective plane.

The homology of RPn is [2, 2.42]:

Hk(RPn; Z) =


Z if k = 0 or k = n odd
Z/2Z if k odd and 0 < k < n

0 otherwise

As a corollary of the Alexander duality [2, 3.45], any compact and locally contractible subspace of Rn

is torsion-free in homology of degree n−2. But H1(RP 2; Z) = Z/2Z, hence the real projective plane
cannot be embedded into R3; it can only be immersed, i. e. it can be locally embedded at any point.

1Julius Petersen constructed this graph in order to show that not all connected, bridgeless cubic graphs have chromatic
index 3. In fact the Petersen graph, constructed in 1898 by Petersen, remained the only known counterexample until 1946
(cf. [3, p. 71]).

2Removing an arbitrary edge will not break the connectedness of the graph.
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The cross cap is a two-dimensional real manifold that is homeomorphic to the real projective plane
RP 2. It will serve as our model of the real projective plane in R3.

1.3 Embedding the Petersen Graph on the Cross Cap

Using this “planar model” of RP 2, we can now easily see that an embedding of the Petersen graph
without edge intersection onto the surface of the cross cap is in fact possible. To see this, start with
the Petersen graph in the form with just two edge intersections (figure 1b), leaving out all the edges
that would intersect. Embedded in RP 2 (figure 3) one now draws the remaining edges in the following
fashion, taking the dotted line as an example (cf. figure 4): Draw the edge to leave the [0,1] × [0,1]
square (with origin at the lower left, say) at (0, 1/4). Because the red sides are glued together with
opposite orientation, continuing to draw this edge will commence from (1, 3/4). In the same fashion,
the dashed edge passes the points (0, 3/4) and (1, 1/4) simultaneously (because they are in fact the
same point in this construction); the same goes for the solid line at the points (0, 1/2) and (1, 1/2).
Neither of these points induce a crossing.

Figure 4: An embedding of the Petersen graph without edge intersection on the surface of the cross cap.

This result shows that it is in fact possible to embed the Petersen graph onto the cross cap without any
edge intersection – however, this model of the cross cap has hardly any resemblance of how a model of
it would look like immersed in R3.

1.4 An Alternative Embedding Approach Using the Dodecahedron

It is possible to obtain the embedding described in the previous section along with a construction of
the cross cap “in one step”. The (regular) dodecahedron (from gr. δωδεκα, twelve) is the platonic solid
that consists of 12 regular pentagonal faces. Three of these faces meet at each vertex, hence the graph
consisting of the 20 vertices and 30 edges is cubic.
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One can now transfer the construction of RP 2 from S2 to the dodecahedron: Identifying antipodal
points, we get a surface that consists of 6 faces and whose 10 vertices and 15 edges form the cubic
Petersen graph. While this construction is very neat and elegant, it does not make clear how the Petersen
graph appears on the surface.

2 The Maya Construction

Given that it is hard to grasp the “actual look” of the cross cap in its planar form, we realized it as a
real 2-manifold embedded in R3. To do this, we chose the 3D modeling software Autodesk Maya®
(or simply Maya). It is a state-of-the-art system not only for modeling objects, but also for creating
animations with these objects.

Our goal was to create an insightful animation that highlights the following points we previously out-
lined in section 1:

• How the cross cap can be immersed in Euclidean space R3

• How the immersion will have self-intersections

• How the Petersen graph can be embedded onto this surface

• How this embedding will not have edge intersections

In the following sections we will present our motivation for designing the animation the way we did,
and give a brief coverage of the technical steps that were necessary in Maya to produce this result.

2.1 Constructing the Cross Cap

Initially we tried a construction of the cross cap starting with a dodecahedron as outlined in section 1.4
and motivated by [1, p. 270f]. A standard topological construction of point identification is possible to
achieve vertex or edge-wise: Analogously to the construction of RP 2 from S2, one can start off with
one half of the dodecahedron and continue to identify border edges and vertices, bending and inflating
the object in the process. The advantage of this process is that it is producing the Petersen graph “for
free” from the original edges.

This construction process works well in practice – however the resulting object is very difficult to
comprehend in 3-space. So despite losing the advantage of the dodecahedron construction method, we
chose the cross cap as depicted in [6, section 1.7] as this model is more symmetric and gives a better
idea of the object itself.

To model a symmetric cross cap, instead of employing a parametrization, we used the readily available
modeling tools of Maya. Starting of with a highly subdivided grid, we bent and flared it in the right
directions, getting an object very close to the parametrized cross cap (cf. [6]). For the construction
process, see figures 5a–d on page 6.

In order to make the self-intersection of the cross cap visible, we designed a texture for our surface in
such a way that it will make our surface appear to have an actual self-intersection.
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Figure 5: The construction process of the cross cap model

(a) Starting with a highly subdivided polygonal surface, bend it to a tube
with the Deformation / Nonlinear Bend tool.

(b) Press down both sides of the tube using the Deformation / Nonlinear
Flare tool. Adjust the parameters of the tool so that the middle still
bulges.

(c) Applying another Deformation / Nonlinear Bend around the center,
bring together the two “flattened” ends of the tube.

(d) Moving the bend handle from step (c), “close” the hole in the middle
of the figure.
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2.2 Embedding the Petersen Graph

To add the Petersen graph we projected suitable curves on the surface, according to the construction
described in section 1.3 – see figure 7a. At the self-intersection, we manually chose on which part of
the surface the curve will continue. We subsequently thickened them, and in particular used sphere
primitives to indicate the vertices of the graph.

Figure 6: The final construction steps: Drawing the Petersen graph and applying a texture

(a) Using the Make selected object live switch, draw
cubic EP curves on the surface. Create a NURBS
circle primitive orthogonal to the line drawn and use
the Surface / Extrude tool: This will produce the
cartesian product of the circle along the curve. A
slightly bigger sphere primitive will serve as vertex
of the graph.

(b) The surface is still a plane bent to look like a closed
2-manifold. Apply a suitable texture to make clear
how the self-intersection happens, even though the
surface itself does not actually self-intersect. The
texture should be half-transparent to give a good
view of all vertices and edges, regardless of their
position.

2.3 Designing an Animation

The first part of our animation shows the cross cap being viewed by a camera going around the object.
By seeing an object in (passive) motion the viewer is able to get an advanced picture of the focussed
object. The route of the camera is chosen such that the viewer will get a glance from all important
perspectives and be able to make a whole three-dimensional picture on her own.

A special highlight is that we chose the texture to indicate the necessary self-intersection the object
exhibits when immersed in three dimensional space. This way, the viewer immediately sees that at the
intersection, the otherwise smooth gradient coloring of the surface object suddenly breaks. At second
glance she will see how the coloring actually continues smoothly, but on the previously obstructed
“underside”.

In the second part of our animation, we show how the Petersen graph is drawn on the surface of the
cross cap. As motivation for the drawing order we use figure 4, first drawing the lines in the middle
that can be drawn without self intersection of edges even in the plane.

Then the camera makes moves, focussing on how each of the remaining edges is drawn sequentially on
the surface without producing any self-intersection.

You can view an online version of the rendered video here: http://feh.userpage.fu-berlin.
de/petersen.html

http://feh.userpage.fu-berlin.de/petersen.html
http://feh.userpage.fu-berlin.de/petersen.html
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Figure 8: The camera motion and a rendered image

(a) A global view of the camera moving around the ob-
ject. The rectangle at the bottom is used to view the
texture of the cross cap in the plain.

(b) A screenshot from the resulting video. We use the
Maya’s raytracing mode in order to get realistic-
looking shadows and transparency effects.

3 Conclusion

We introduced first the Petersen graph and then the cross cap; we then showed how the graph can be
embedded on the surface of the cross cap. With this mathematical motivation we set out to create a
visualization of this process in 3-space. By moving the point of view around the object several times,
the viewer can form an intuition about the construction in her mind.
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